Shared Content Block:
Styles -- hide parts of news feed

Shared Content Block:
Styles -- prevent images from going to 100 percent width on mobile

Research



The objective of the RNA Bioscience Initiative is to understand the role of RNA in biology, engage in collaborative research, create a fluid pipeline from basic science to clinical diagnostics and therapeutics, and train the next generation of RNA researchers.

Investigators on the CU Anschutz campus have already made important discoveries in the field, covering RNA structure-function, RNA biogenesis, mechanisms of regulation by non-coding RNAs, non-coding RNAs in disease, diagnostics, and therapeutics, cutting-edge RNA technologies and advanced genome-wide computational methods.

The RNA Bioscience Initiative continues to make substantial and sustained contributions to four major research areas:

Highlights

A brief look at the latest discoveries from RBI faculty and trainees.


 

Morrison- Oct 2021

MARCO+ lymphatic endothelial cells sequester arthritogenic alphaviruses to limit viremia and viral dissemination

October 7, 2021

Kathryn S Carpentier, Ryan M Sheridan, Cormac J Lucas, Bennett J Davenport, Frances S Li, Erin D Lucas, Mary K McCarthy, Glennys V Reynoso, Nicholas A May, Beth A J Tamburini, Jay R Hesselberth, Heather D Hickman, Thomas E Morrison

 

Viremia in the vertebrate host is a major determinant of arboviral reservoir competency, transmission efficiency, and disease severity. However, immune mechanisms that control arboviral viremia are poorly defined. Here, we identify critical roles for the scavenger receptor MARCO in controlling viremia during arthritogenic alphavirus infections in mice. Following subcutaneous inoculation, arthritogenic alphavirus particles drain via the lymph and are rapidly captured by MARCO+ lymphatic endothelial cells (LECs) in the draining lymph node (dLN), limiting... Complete Abstract

 


Pearson- October 2021

The SON RNA splicing factor is required for intracellular trafficking structures that promote centriole assembly and ciliogenesis

October 1, 2021

Alexander J Stemm-Wolf, Eileen T O'Toole, Ryan M Sheridan, Jacob T Morgan, Chad G Pearson

 

Control of centrosome assembly is critical for cell division, intracellular trafficking, and cilia. Regulation of centrosome number occurs through the precise duplication of centrioles that reside in centrosomes. Here we explored transcriptional control of centriole assembly and find that the RNA splicing factor SON is specifically required for completing procentriole assembly. Complete Abstract

 


Mukherjee- September 2021

Transcriptomic Response Dynamics of Human Primary and Immortalized Adrenocortical Cells to Steroidogenic Stimuli

 

September 9, 2021

 

Kimberly Wellman, Rui Fu, Amber Baldwin, Juilee Rege, Elisabeth Murphy, William E Rainey, Neelanjan Mukherjee

 

Adrenal steroid hormone production is a dynamic process stimulated by adrenocorticotropic hormone (ACTH) and angiotensin II (AngII). These ligands initialize a rapid and robust gene expression response required for steroidogenesis. Here, we compare the predominant human immortalized cell line model, H295R cell, with primary cultures of adult adrenocortical cells derived... Complete Abstract

 


Russ-August 2021

ENTPD3 marks mature stem cell derived beta cells formed by self-aggregation in vitro

August 11, 2021

Fiona M Docherty, Kent A Riemondy, Roberto Castro-Gutierrez, JaeAnn M Dwulet, Ali H Shilleh, Maria S Hansen, Shane P M Williams, Lucas H Armitage, Katherine E Santostefano, Mark A Wallet, Clayton E Mathews, Taylor M Triolo, Richard K P Benninger, Holger A Russ

Stem cell derived beta-like cells (sBC) carry the promise of providing an abundant source of insulin-producing cells for use in cell replacement therapy for patients with diabetes, potentially allowing widespread implementation of a practical cure. To achieve their clinical promise, sBC need to function comparably to mature adult beta cells, but as yet they display varying degrees of maturity. Indeed, detailed knowledge of the events resulting in human beta cell maturation remains obscure. Complete Abstract