Contact Information:
University of Colorado Denver
Department of Pharmacology
Mail Stop 8303, RC1-South
12801 East 17th Ave
Aurora CO 80045
Office: RC1-Sorth, L18-6120
More information on Dr. Murphy's book, here
While I have now retired from active, laboratory research I can summarize the research carried out for the past 45+ years in the 4 areas below. In general they focused on the basic biochemistry and pharmacological control of lipid mediators derived from both enzymatic and nonenzymatic pathways largely employing techniques of sophisticated mass spectrometry to address critical issues. The term lipid mediators is used here in the context that many of the compounds under investigation have potent and diverse biological activities that permit cells to intercommunicate with each other. For example, following exposure to reactive oxygen species new lipid molecules are formed from endogenous lipids by covalent alteration of their chemical structure and these new molecules cause cells in a tissue to respond to the oxidant stress. A major emphasis was to involve the use of mass spectrometry for both qualitative and quantitative investigations in this area of lipid biochemistry. Five specific areas the general focus of activities in this laboratory and they include:
2. The cooperation of cells in the biosynthesis of leukotrienes led to the discovery of a process termed transcellular biosynthesis where two or more cells cooperate to complete the entire biosynthetic cascade leading to the bioactive leukotrienes, leukotriene C4 and leukotriene B4. Neutrophils, when activated produce leukotriene B 4, however, when neutrophils are incubated in the presence of platelets and then activated, a major product is leukotriene C4. Platelets were found not to have 5-lipoxygenase, but contain leukotriene C4 synthase. These transcellular biosynthetic events were found to be surprising efficient in vivo using chimeric mice. The existence of this complexity of biosynthesis has permitted an understanding of the potential role of leukotrienes in pathology such as traumatic brain injury and retinopathy. Where neuroma cells which do not express 5-lipoxygenase can participate in the formation of leukotrienes.
3. The structural characterization of metabolites of leukotrienes as well as prostaglandins had been investigated in cells, tissues, and in the intact animal which has led to a description of metabolites that can be used to assess production of leukotrienes and prostaglandins in vivo. Furthermore, these studies have revealed the important role of metabolism to terminate biological activity.
Figure 4. Proposed pathway for metabolism of LTB4 in the human subject with urinary metabolites identified in a human subject treated with exogenous LTB4, indicated. Required intermediate metabolites not observed are indicated in brackets. UDP-glucuronosyl transferase(UGT)-dependent pathways resulting in glucuronide metabolites and cytochromeP-450(CYP4F) pathways are indicated.
4. Fundamental studies of phospholipid biochemistry have also been a major focus of this laboratory. Initial studies led to a description of the rapid remodeling of arachidonic acid within the human neutrophil. Employing for the first time mass spectrometry to study molecular species of phospholipids. More recently, this interest in phospholipid biochemistry has led to the description of the lysophospholipid acyltransferases present in the human neutrophil and the use of a novel substrate choice assay based on mass spectrometry to study the four major lysophospholipid acyltransferases. In addition to this, many methods were developed based on electrospray tandem mass spectrometry to study molecular species of phospholipids which naturally led to the involvement of this laboratory with the Lipid MAPS consortium and a major initiative into the building of infrastructure for lipid biochemistry based on mass spectrometry.
Figure 5. Dual substrate choice acyltransferase assay of microsomes from yeast expressing human MBOAT proteins. Acyltransferase was assayed as described above, with microsomes from yeast expressing the indicated human proteins, in the absence or presence of 50 µM thimerosal. The amount of each individual phospholipid species is expressed as the percentage of its integrated LC/MS/MS signal to the corresponding phospholipid internal standard added at the end of the incubation. Data are normalized for protein expression, and background activity present in yeast transformed with empty vector is subtracted. Data shown are average ± SEM of at least two individual experiments performed in triplicate.
5. A general interest in the tandem mass spectrometry of lipids has emerged over many years and many classes of lipids have been studied in terms of their gas phase ion chemistry. These include phospholipids, eicosanoids, neutral lipids, and lipid oxidation products. This includes a description of the complexity of oxidized cholesterol esters present in human atherosclerotic plaques. A major advance has been the use of imaging mass spectrometry based on MALDI ionization in a quadrupole time-of-flight mass spectrometer to identify and measure distribution of complex lipids in tissue slices such as distribution of phospholipids in brain regions.
Figure 6. Positive ion MALDI IMS of PC and SM lipids in human ocular tissue. A: H&E stain of ocular tissue section immediately adjacent to the section used for MALDI imaging. Total positive ion MALDI mass spectra of the accessory tissue (B), optic nerve (C), and retina (D) were obtained directly from the ocular section. Extracted positive ion MALDI images of the [M+Na]+ of TAG(52:2) (m/z 881.8) (E), SM(d18:1/18:0) (m/z 753.6) (F), PC(34:1) (m/z 782.6) (G), PC(36:1) (m/z 810.6) (H), PC(40:6) (m/z 856.6) (I), and the [M+H-H2O]+ of Cer(d18:1/18:0) (m/z 548.5) (J). K: Merged positive ion MALDI image of Cer(d18:1/18:0) (blue), PC(40:6) (red), and PC(36:1) (green). GCL, ganglion cell layer.