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The STAT3-VDAC1 Axis Modulates Mitochondrial
Function and Plays a Critical Role in the Survival
of Leukemic Stem Cells
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Acute Myeloid
Leukemia

« AML is an aggressive leukemia
* The average age of diagnosis is 69

« Estimated 20,380 new cases of
AML in 2023

* About 11,310 deaths from AML
yearly




Incidence and Prognosis of Acute Myeloid
Leukemia
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Management of Acute Myeloid Leukemia

Remission

Cherry, E et al. Blood Advances 5(24):5565-5573, 2021
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Role of STAT3 in AML

* STAT3 = transcription factor

Leukemia stem cell

e Known to regulate glutamine
uptake via MYC-SLC1A5

Mitochondria

* Regulates Oxidative
Phosphorylation

* Also known to transport to the /’G/,utamine_,ﬁ,utmte/v '
mitochondria directly, signaled
by pSTAT3 S727

Amaya M.L., et al, Blood 2022; 139 (4): 584-596.



Current Work

AlMs

e Determine how mitochondrial STAT3 modulates mitochondrial
metabolism in AML

 Determine STAT3’s interaction with mitochondrial proteins

* Determine the therapeutic potential of targeting STAT3 in AML



Results

STAT3 expression and inhibition
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Results
Mitochondrial STAT3 interacts with Voltage Dependent Anion Channel-1 (VDAC1)
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Mitochondrial STAT3 interacts with Voltage Dependent Anion Channel-1 (VDAC1)
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Mitochondrial STAT3 interacts with Voltage Dependent Anion Channel-1 (VDAC1)
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Results
Mitochondrial STAT3 interacts with Voltage Dependent Anion Channel-1 (VDAC1)
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Physiologic roles of VDAC1
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OCR (pmol/min)

Results
STAT3 and VDACT1 affect energy metabolism in leukemic cells
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Results
STAT3 and VDACT1 affect energy metabolism in leukemic cells
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Results
STAT3 and VDACT1 affect energy metabolism in leukemic cells
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Results
STAT3 and VDAC1 inhibition decreases mitochondrial Ca**
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Results
STAT3 and VDAC1 inhibition decreases mitochondrial Ca**
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Physiologic roles of VDAC1
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Results

STAT3 inhibition increases mitochondrial ROS
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Results
Mitochondrial changes with STAT3 and VDAC1 inhibition
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Results
STAT3 and VDACT1 inhibition disrupt mitochondrial dynamics
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Results
Mitochondrial changes with STAT3 and VDAC1 inhibition
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Results
STAT3 and VDACT inhibition decrease viability and impair engraftment potential

In vitro treatments

skokk
> 80 N 100
= 80-
‘s 60+ =
o s 60
> 40+ > 40
o
= 20- 20
0_.
0 N S ro\,@" & &
¥) g x2
o £
%" S

Molm13 cells Primary AML Samples




Results
STAT3 and VDACT inhibition decrease viability and impair engraftment potential
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Results
STAT3 and VDACT inhibition decrease viability and impair engraftment potential
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Results
STAT3 and VDACT inhibition decrease viability and impair engraftment potential
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Results
STAT3 and VDACT inhibition decrease viability and impair engraftment potential
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Conclusions

STAT3 is prominently expression in AML and phosphorylation triggers mitochondrial localization

STAT3 interacts with VDAC1 in the mitochondria, a novel protein-protein interaction

Inhibition of STAT3 and VDAC1 results in:

Impaired OXPHOS

Decreased mitochondrial calcium
Decreased Mito Membrane Potential
Decreased AML cell viability

Impairs AML engraftment potential
Altered ROS
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Future Directions

* STAT3 Kl mouse experiments

* Recapitulation with CRISPR’d pSTAT3 S727 cell lines

* Investigation of other STAT3 associated proteins

« ANT2
* Cyclophilin D

e Studying role in mitochondrial Permeability Transition Pore
(MPTP)
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An In Vitro Model of Fetal Growth
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Extracellular Vesicle Release of
microRNA 141-3p
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Background: Fetal Growth Restriction

« Fetal weight below the 10" percentile

« Affects 3-10% of pregnancies and
accounts for nearly 50% of stillbirths

« High rate of perinatal morbidity/mortality

* Associated with cognitive and
developmental delays

« Annual US healthcare cost > $15 billion
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Background

« Placental pathology demonstrates Control
reduced feto-placental angiogenesis

in FGR

* microRNAs (miRNAs) within the fetal
growth restricted placenta have

altered levels of expression
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Background

MRNA

* microRNA

Suppression

Ribosome microRNA
u
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Background

Extracellular Vesicles
Intracellular Effects
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Background

Pregnant Mouse

Extracellular
Vesicles

microRNA
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Hypothesis

We hypothesize that nutrient restriction in trophoblasts
(hTSCs) simulate the release of EV-miRNAs that
communicate with placental endothelial cells to suppress
angiogenesis
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Methods
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Methods
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Results

In 8 “Simple” Steps...

’ U Affiliated with
‘¥Chi|dren’s Hospital Colorado University of Colorado
® Here, it's different. Anschutz Medical Campus




Step 1: Confirm Nutrient Restriction Model
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Step 2: Characterization of Extracellular Vesicles

A
Character of EVs from
Nutrient-Complete hTSCs
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Step 3: mRNA seq of HUVECs + EVs

Endothelial Cells Co-
cultured with EVs
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Step 3: mRNA seq of HUVECs + EVs

Downregulated Pathways Targeted by HUVECs Exposed to Nutrient-Restricted vs Nutrient
Complete hTSC EVs
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Step 4: miRNA seq of EVs
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Step 5: mRNA seq of HUVECs + miR-141-3p
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Step 5: mRNA seq of HUVECs + miR-141-3p

Downregulated Pathways Targeted by HUVECs
Exposed to miRNA 141-3p
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Step 6: Mechanistic Study- Tube Formation Assay
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Gene Studies
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Step 6: Mechanistic Study- Tube Formation Assay
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Step 7: Targeted Gene Study- Dual Luciferase Assay

miRNA-141-3p

X

\ Mechanistic & Targeted

Children’s Hospital Colorado
Here, it’s different.

Gene Studies

Tube Formation Assay
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Anticipated Results IF miR-141-3p Targets YAP-1

«  WT YAP-1 UTR: reduced luc activity when +miR
141-3p, return to baseline with +miR 141-3p Ant

«  NO1: +miR 141 slightly reduced luc activity but less
than WT

+  NO2: +miR 141 slightly reduced luc activity but less
than WT

*  NO-NO: +miR 141 remains the same at WT without
miR added, no change with +miR 141 Ant



Step 7: Targeted Gene Study- Dual Luciferase Assay

Effects of miR-141-3p on Luciferase Activity of YAP-1 UTR
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Step 8: Targeted Gene Study- YAP-1 ELISA & Western

YAP-1 Protein Concentration

10 &
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Conclusions

- Nutrient-restriction in hTSCs stimulates the release of EVs with
upregulated miR-141-3p
- Endothelial cell exposure to nutrient-restricted hTSC EVs and miR-
141-3p
- Downregulate pathways essential to angiogenesis
- Reductions in YAP-1 gene expression, a potential mechanism
- miR-141-3p decreases in vitro tube formation of endothelial cells
- Endothelial cell exposure to miR-141-3p demonstrates diminished
YAP-1 protein expression
- Additional studies needed to confirm specific targeting
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Future Directions

- Mouse blastocyst with upregulated miR-141-3p

- Nutrient restriction in early placental organoids
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Concurrent changes in macrophage and T cell
subsets over time in murine obstructive
cholestasis suggest interplay between
macrophage and T cell function in promotion
of hepatic injury

Lauren (Lo) Maloney, MD
Mentor: Dr. Sarah Taylor
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Background:

1/7000 live
births — 1/15,000

GALLBLADDER

NORMAL BILE DUCT BILE DUCTS ARE BLOCKED

Liver biopsy from an infant with BA at diagnosis that underwent liver transplant
before 2 years of age. Histologic findings include expansion of the portal tract with
stromal edema, prominent fibrosis, bile duct proliferation (black arrows), and bile
plugs (white arrows).

Biliary Atresia (BA)

Transplant

Leading indication in
children worldwide



Background: immunology
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Unique tolerogenic microenvironment of the liver = impaired in
disease.

Oligoclonal expansion of T & B cells in cholestatic injury =
supports presence of antigen-driven immune stimulation to
autoantigens.

Impaired function of Tregs & Th1l dominant immune response in
most infants early in disease have been shown in BA.

Recent work from Taylor lab - macrophage heterogeneity in
neonatal murine models of obstructive cholestasis; reduction in
immune regulatory function of hepatic macrophages in cholestatic
models compared to non-diseased mice.



Background: BA model
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T cell ratios
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Expression Level

Expression Level

scRNA- seq: macrophages by cluster
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Conclusions and Future Directions

In a murine BDL model of obstructive cholestasis, at POD 3 the cholestatic group has significantly
more CD8 and CD4 T cells, although fewer FoxP3 T regulatory CD4 t cells than baseline or sham
surgical condition.

At POD 7 the sham surgical group demonstrates shift in T cell compartment closer to baseline, while
the cholestatic group shows persistent decrease in CD4/CD8 ratio compared to baseline.

At POD 3 animals who underwent BDL have significantly tissue resident macrophages and those of
inflammatory phenotype than sham or baseline groups. At POD 7, cholestatic mice demonstrate
persistent inflammatory macrophage phenotype and increased number of MHC2 positive
macrophages, indicating an increase in antigen presentation compacities.
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Cellular Senescence in Obstructive

Cholangiopathies
loannis A. Ziogas, MD, MPH Mentor: Sarah A. Taylor, MD
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Background

= Biliary atresia
= Metabolic/Genetic
Acute liver failure
= Tumor
1 Cirrhosis
= immune
Other

 Biliary atresia (BA) is the most common
indication for pediatric liver transplantation (LT)

« Restoration of bile flow with Kasai
portoenterostomy is crucial

« Characterized by cholestatic liver injury with
cellular apoptosis and immune cell recruitment
(i.e., macrophages [M®s])

e () Affiliated with
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Cellular Senescence

« State of cell cycle arrest but active

« Natural response to DNA damage to prevent {
proliferation of abnormal cells + . —

« Favorable role in tissue repair and B8 e
regeneration or promote tissue injury
« Effect of senescent cells on tissue injury is oty

influenced by senescent cell-cell interactions

o
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Cellular Senescence in Biliary Atresia

 Increased numbers of senescent cells in
murine BA

* Increased cellular senescence at
diagnosis is associated with improved
outcome in children with BA as defined
by longer duration of survival with the
native liver

®
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Central Hypothesis ra
* MO efferocytosis of senescent cells - 2K @

promotes tissue regeneration in neonatal
obstructive cholestasis whereas

senescent cells impair efferocytosis and Q - ,
. o e . . Obstructive : _
exacerbate tissue injury in older patients Cholangiopathy

Senescent Cell { Macrophage

Efferocytosis -->
Tissue injury

Senescent Cell T Macrophage
Efferocytosis -->
Tissue Repair

Created in BioRender.com

Specific Aim/Research Question

* How does senescent cell depletion impact severity
of liver injury in neonatal versus adult mice after
bile duct ligation (BDL)?

®
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Experimental Design

* Murine Model of BDL in C57BL/6 (B6) mice
« Responsible Conduct of Research - IACUC approval

Neonatal Blle Duct Ligation Performed on DOL10 by Dr loanms Zlogas

» BDL replicates clinical features of A | AL
cholestasis

Suture Being Tied
Around Bile Duct § [E&

e Qutcome analyses:

 Neonate (BDL on day of life 10 [DOL10]):
postoperative day 7 (POD7) or DOL17 ‘ n 1NN S 1 =

) Adult (BDL On Week 8-12): POD7 duct with two 8-0 Nylon sutures

’ () Affiliated with
'¥Children’s Hospital Colorado @]‘ SChOOl of Medicine 83

) . S O COLO ]
® Here, it's different™ T2 MEDICAL CAMPUS



« Dasatinib (5 mg/kg)
* Quercetin (50 mg/kg)

Neonate Adult
BDL Sham BDL Sham
D+Q SLN D+Q SLN D+Q SLN D+Q SLN
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Outcome Measures

Biochemical markers of cholestatic liver injury

Histologic liver injury (Ishak score)

gPCR analysis for expression of markers of senescence
Flow cytometry for senescent cells (e.g., cholangiocytes)

®
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Preliminary Results

 Still perfecting neonatal BDL model given maternal cannibalism of
pups, so started proof of concept experiments with adult mice for
the efficacy of D+Q injections and determination of optimal dosing

®
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Adult (8-12-week-old) C57BL/6 mice

Children’s Hospital Colorado
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A) BDL POD1 inj POD2 sac
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Blood Chemistry
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gPCR Analysis
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B) BDL POD1+2 inj POD3 sac
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Blood Chemistry
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gPCR Analysis
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C) BDL POD4-6 inj POD7 sac
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Blood Chemistry
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gPCR Analysis
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Flow Cytometry
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Conclusions & Future Directions

« Combination of dasatinib & quercetin can lead to depletion of

senescent cells, yet the dosing and impact on disease progression
warrants further investigation

* Next steps will include:

« gPCR analysis of additional fibrosis and senescence-associated secretory
phenotype factors
« Beta-gal, CK19, Ki-67, sirius red staining
« Neonatal BDL
« Evaluation of fisetin (flavonoid senolytic agent)
|
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Questions?

Contact info:
* Email: ioannis.ziogas@cuanschutz.edu
« X: @lA_Ziogas
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Microglial phagocytic response to EV-D68 infection
in the spinal cord during early postnatal
development



Enterovirus D68 and Age Specific Vulnerability to Acute Flaccid Myelitis

Enterovirus D68 (EV-D68) is a
respiratory pathogen that has
emerged as a cause of acute
flaccid myelitis (AFM) in
children in the past decade

Over 90% of EV-D68 associated
AFM cases occur in patients
who are younger than 18 years
old, with a median age of

7.1 years in the 2014 outbreak
(Sejvar et al., 2016) and

5.3 years during the 2018
outbreak (Kidd et al., 2021).

EV-D68 RNA in the Anterior Horn Neurons of the Spinal Cord of 5 year old
boy who died of an AFM-like illness in 2008
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Enterovirus D68 (EV-D68)—specific
genomic RNA is demonstrated by in
situ hybridization
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Mouse Model of EV-D68 and Acute Flaccid Myelitis

Paralysis at
hip joint =3

Paralysis beyond
knee joint =2
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Hixon et al., PLOS Pathogen. 2017; 13(2)

Motor neuron is larger in size than
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Microglia: Brain Resident Immune Cells

Do microglia help mediate age-dependent susceptibility to
development of acute flaccid myelitis?

Microglia are immune cells responsible
for responding to disruptions in
homeostasis, including:
- Infection

- Injury

Microglia are involved in
developmental events such as
neurogenesis and
myelinogenesis and may
respond differently to
environmental cues during
these periods

Viral infection during critical
periods may thus result in a
dysregulated microglia
response




Microglia in the CNS exhibit phagocytic predominance in the first postnatal week

Single cell microglia analysis identified a microglia subset that

showed a distinct gene expression profile in the first postnatal CDIIc (Itgax)
week associated with areas of proliferation

Sppl
- CD11c+ microglia (Wlodarczyk et al., 2017)
- Axon tract associated microglia (Hammond et al., 2019) Gpnmb
- Proliferative region-associated microglia (Li et al., 2019) lgfl
- Youth-associated microglia (YAM) (Silvin et al., 2022) Clec7a

- Aringase-1+ microglia (Stratoulias et al., 2023)

CX3CR1-GFP MBP DAPI

Proportion of CD11c+ microglia highest at postnatal day 4
in the spinal cord

Nomaki et al., 2024, Molecular Brain 17:24 Li et al., 2019, Neuron 101, 207-223



Do microglia help mediate age-dependent susceptibility to development of
acute flaccid myelitis?

Immunohistochemistry Markers

Objective: Perform time course to assess for peak Microglia &
microglial response and phagocytic activity following EV- m

D68 infection. Ibal NeuN

Cd68 ChAT

Experiment: Infect Swiss—Webster mouse pups with EV-
D68 at postnatal day 1 (when paralysis is expected) and
PBS in the left hindlimb. Obtain samples at 2, 4, 6 and 8
days post-infection to determine time point for peak

microglia response.
Days Post Infection

Postnatal Day 1 DPI 2 DPI4 DPI6 DPI 8




IM injection of EV-D68 at postnatal day 1 induces paralysis

< Paralysis beyond

knee joint =2

Paralysis beyond
ankle joint =1

Paralysis Scoring

(scored by a blinded observer): 15-

g
S 10-

n

< Paralysis at i
hip joint =3 ® 54

' ©

o

P1 Timecourse Paralysis Scores

Days Post Injection N

DPI 2

DPI 4
DPI 6
DPI 8

e PBS
m EV-D68

HE-E—

_anEh o0 ﬂ -
2 4 6
Days Post Injection

PBS

Paralysis Score
[Average]

40 [0]
30 [0]

50 [0]
20 [0]

N

EV-D68
Paralysis Score [Average]

50.5,0.5,0.5,0.5,0[0.4]
43,3, 3,3 [3]

46, 6, 6, 6 [6]

311, 6, 7 [8]



JEV-D68 VP2 / DAPI

Confirm infection with EV-D68 Viral Capsid Protein VP2

2 Days Post-Infection

Infected Motor
Neuron ™ ’

-

6 Days Post-Infection

Ventral Horn Motor

o5 ¥  Neurons




EV-D68 infection associated with microglia accumulation

Four days after injection with PBS or EV-D68 in left hindlimb

~ PBS EV-D68
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EV-D68 infection associated with motor neuron loss

Six days after injection with PBS or EV-D68 in left hindlimb
PBS EV-D68

/ ChAT / DAPI



Microglia Density Analysis

DPI 4; EV-D68 ROI Drawn on DAPI

NeuN / Ibal / DAPI

Iba1* Objects / mm?

nﬁﬁ

Ipsilateral Spinal Cord Microglia Density

*

:

4

Days Post Injection

e PBS
e EV-D6S8




EV-D68 infection associated with increase in microglia CD68
PBS EV-D68
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EV-D68 infection associated with increase in microglia CD68

DPI1 6; EV-D68 CD68,;
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/ Ibal / DAPI

EV-D68 infection associated with increase in microglia density

PBS EV-D68
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EV-D68 infection associated with increase in microglia density
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EV-D68 infection associated with increase in microglia CD68

Ipsilateral CD68 Mean Gray Value / Iba1+ Object
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Key Takeaways

- EV-D68 infection in first postnatal
week induces paralysis in mouse
model of acute flaccid myelitis

- EV-D68 infection is associated
with spinal cord ventral horn
motor neuron loss

- EV-D68 infection promotes
microglia accumulation and
increased microglial phagocytic
activity

CD68 / Ibal / DAPI

8 Days Post-Infection




Virus in

IL/14-18952

2022-23447

Postnatal Day 15

Immunohistochemistry & Mass Cytometry:

Microglia Phagocytosis
Subtype

Cdllc (Itgax)
IFITM3

i

Paralysis Score
N

Spinal Cord

_l PBS No No

Postnatal Day 1

Prelim data-

OR235127

Clec7a

MERTK

P1

Up Next: Contrast microglia response to EV-D68 infection in the
spinal cord during early and late postnatal development

s r

KM851230

2014, USA,
Respiratory

2022, USA,
Respiratory

Paralysis Scores 6 Days Post Infection

e PBS
e EV-D68 2014
EV-D68 2022



Future Questions:

- Does microglia depletion prior to
infection with EV-D68 at postnatal
day 1 mitigate the development of
paralysis?

- Does disrupting microglia .
phagocytosis “rescue” otherwise
viable motor neurons or prevent
microglial antigen presentation to
T cells and the resulting

inflammatory response following
EV-D68 infection?

Liposomal Clodronate
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Exploring Mitochondrial
Transplantation as a Novel
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Introduction

* Cardiac and aortic surgery have higher incidence of perioperative
stroke compared to non-cardiac surgery

* The incidence of stroke in extensive aortic arch replacement for
acute Type A dissection can be up to 20%

Embolic stroke with hemorrhagic conversion

Fanning, JP, et al., PNat Rev Dis Primers, 2024.
Gaudino, M, et al. Circulation, 2020. 1 24

Ghoreishi, M, etal. JTCVS, 2020.



Preventive Strategies Against Stroke

Delay elective cardiac surgery in Minimize aortic manipulation and Implement atrial fibrillation
those with recent stroke optimize cerebral perfusion prophylaxis and treatment

-
__m(m

2

Gaudino, M, et al. Circulation, 2020. @ 125



Challenges in Management of Perioperative ’
Stroke

Limited treatment options Ischemia-reperfusion (IR) injury

* Thrombolysis and thrombectomy * Restoration of cerebral blood flow
are often not feasible in post- can trigger a secondary IR injury
cardiotomy patients due to risk of + The sudden oxygen influx and
bleeding and need for crossing fresh oxidative stress can lead to
anastomoses mitochondrial dysfunction, DNA

damage, inflammatory response,
and activation of apoptosis

Hayashida, K, et al. ] Transl Med, 2021.
Wu, MY, et al. Cell Physiol Biochem, 2018. 1 26



Challenges in Management of Perioperative ’
Stroke

* Mitochondrial transplantation (MTx) has shown promising results in
mitigating neuronal injuries in traumatic and ischemic models

() =2
Transfer

Isolated Mitochondria

Stem Cell Neuron

Spees, JL, etal. Proc Natl Acad Sci USA, 2006.
McCully, JD, et al., Am J Physiol Heart Circ Physiol, 2009. 1 27
Zhang, B, et al. World Neurosurg, 2020.

Nakamura, Y, et al. Stroke, 2020.



Can we prevent permanent cerebral injury?

* Mitochondrial transplantation (MTx) has shown promising results in
mitigating neuronal injuries in traumatic and ischemic models

Our first cell model H-G- [H-0:]
\ ‘ No benefit or o0 [’Q;Q‘]_ [@;@f_
Pre-ischemic MTx Ischemia Worse cell survival H-O-0-H  N2O:

Ex ive ROS?
Our refined cell model cessive ROS

Nicorandil

o]
©
N N/\/O®O
l/

@ MTx during ischemia

\ , Preserved cell viability/proliferation and

Ischemia continued  Mitochondrial respiration
Fewer dysregulated genes

Ikeno, Y, etal. Ann Thora Surg, 2021. 1 28
Wu, BCB et al. Circulation (Abstract), 2025.
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MTx Improved Cell Viability and Proliferation

* Ischemic (OGD) subgroup: Untreated vs. Mito

Normoxic
1.0 Normoxic 300000 CtrlxI
Ctrl
ns
- 250000 ns
0.8 . . . .
nsé pP= 0.084 g 1
° Hieh M Low Mito O 200000
OoGD i ito =
2 06 il ¢ S High Mito .
> 150000 rowtite
a 5
0.4
X 100000
0.2 50000
0
0.0

Cell Proliferation
(CyQUANT)

Cell Viability (MTS)

Wu, BCB et al. Circulation (Abstract), 2025. @ 129



Nicorandil Further Enhanced the Effects

* Ischemic (OGD) subgroup: Untreated vs. Higher dose of Mito £ NIC

0.D. Value

1.0

0.8

0.6

0.4

0.2

0.0

Normoxic
Ctrl ns

Low NIC

High NIC
OGD No NIC ==
Ctrl
Higher dose of Mito

Cell Viability (MTS)

RFU/Live Cell Count

300000

250000

200000

150000

100000

50000

0

Normoxic
Ctrl

1
High NIC

No NIC Low NIC

o
b

OGD

Higher dose of Mito
Cell Proliferation
(CyQUANT)
Wu, BCB et al. Circulation (Abstract), 2025. @ 130



MTx Improved ATP Production

* Ischemic (OGD) subgroup: Untreated vs. Mito

20

15

10

OCR (pmol/min/cell)

Wu, BCB et al. Circulation (Abstract), 2025. @ 131



Nicorandil Further Augmented ATP Production

* Ischemic (OGD) subgroup: Untreated vs. Higher dose of Mito £ NIC

| ——
20 Ctrl
No NIC

58“ 15 High NIC
E Low NIC
g i
g 10 J_
1 4
(6]
o)

5

0

Higher dose of Mito

Wu, BCB et al. Circulation (Abstract), 2025. @ 132



Aims: From In Vitro to In Vivo

* We evaluated whether mitochondrial pre-treatment prior to ischemia
reduces stroke severity and irreversible cerebral injury in vivo

 Aim 1: Demonstrate the neuroprotective effect of pre-ischemia mitochondrial
transplantation

* Aim 2: Optimize dosing and timing for mitochondrial transplantation

T s
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Hypothesis

* Mitochondrial transplantation prior to ischemic stroke will reduce
the severity of neurological deficits and preserve neurons

Gy



Study Design

1. Rodent stroke model (embolic)
2. Non-invasive intranasal delivery of exogenous mitochondria

3. Comparison of the neurobehavioral outcomes, brain imaging,
and histological outcomes among Sham, Stroke without Mito
Pre-treatment, Stroke with Mito Pre-treatment, and Sham

with Mito-Pretreatment

T s



Refinement of In Vivo Stroke Models

e Started with murine embolic stroke model

=>» Murine microfilament middle cerebral artery
occlusion model

=» Murine bilateral carotid artery occlusion model
=» Rat embolic stroke model using microbeads

1CA

ECA




th Embolic MCA Stroke

Rat wi

137
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Preparation for Mitochondrial Transplantation

Quadriceps Muscle Harvest Tissue Homogenization and

from Adult SD Rat Serial Centrifugation Mitochondrial Staining

o
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Intranasal Mitochondrial Delivery

* [n vitro, we labeled donor mitochondria with Mitolracker Red to
visualize uptake by recipient cells

* In vivo, we found unreliable results with the Mitolracker or other
membrane labeling, likely due to dye leakage

* BrdU-labeled mitochondria were subsequently used to track migration
from the nasal cavity to the brain

G



Ctrl Rat: No Mito given Rat#1: total 200 pg Mito Rat#1: total 200 pg Mito
Anterior/Middle Posterior

’ {.‘

Rat#2: total 200 pg Mito Rat#3: total 720 ug Mito
Anterior/Middle Anterior/Middle




Brain MRI Imaging Protocol

* AISR Protocol
* High-resolution T2-turboRARE MRI (sagittal, axial and coronal planes)
* DWI with 6 b-values (axial plane)
 SWI (axial plane)
* Bruker 9.4 Tesla BioSpec Rat Head Array Coil

* Timeline: Baseline, Post-Stroke Day 1, and possible more

* Currently we have obtained baseline brain images from 5 rats
for reference. Additionally, we have performed brain MRl on
five stroke rats on day 1

@]’ 141
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First Mitochondria Pre-treatment Model

 Group
« Sham x3 (One died d/t anesthesia)
e Mitox 2
* Stroke x4 (One died during recovery from anesthesia on PODO)

* Mitochondria labeled using BrdU
« Sham received intranasal hyaluronidase (50 pL x 2) + saline (50 pyL x 2)

* Mito received intranasal hyaluronidase (50 pyL x 2) + mitochondria (50
uLx2/16 ug/uL ->1600 pg)

* Stroke received intranasal hyaluronidase (50 pL x 2) + saline (50 yL x 2)

&



Blinded Behavioral Assessment

Score

Modified Neurological Severity Score (MNSS)
Surgery Date: 11/13/25

181
161
14 -

124

Group
10 Mito
8 - “® Sham
Stroke

6 -
4 -

.-—-.._________\
21 Ce——

[
0 -

1' 2 3

Postop Day

Balance beam test
One component of mMNSS
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Total Distance Moved (cm)
Global Test: ANOVA + Tukey

ns

ns
8000 ]
ns
1
L]
L]
6000
L]
| .
L]
4000
L]
A =057
n|>vaip
Sham Stroke Mito
Corner Bias Ratio
Global Test: ANOVA + Tukey
1.02
ns
1
ns
1
ns
1
0.99 [
° L]
0.96
L]
0.93
Anova, p=0.31
L]
0.90
Sham Stroke Mito

0.8

0.7

0.6

0.4

Open Field 11/17/25 (POD4

Mean Velocity (cm/s)
Global Test: ANOVA + Tukey

ns

ns

1

ns

Anlwa p =057
L

Sham Stroke Mito

Proportion of Time Moving
Global Test: ANOVA + Tukey

ns
|
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1
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1
L]
L]
L]
Anpva, p = 0.59
.
Sham Stroke Mito
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500
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Global Test: ANOVA + Tukey

ns
1
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1
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_
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Anova, p = 0.26
L
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Latency to Enter Center (s)
Global Test: ANOVA + Tukey
ns
|
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1
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1
L]
L]
I_k'_|
Aana‘ p=043
Py L
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Current Mitochondrial Pre-treatment Model

* Three independent experiments since mid November 2025

1. 11/18
e Mitox2
» Stroke x2 (One found dead on post-stroke day 1)

2. 12/03

» Stroke x 3 (One euthanized on post-stroke day 2 due to respiratory concern)
e Mitox2
3. 12/08
e Shamx3
e Stroke x 3
e Mitox3

* Mito received intranasal hyaluronidase (25 pyL x 2) + mitochondria (25 uL x 2/
16 pg/ul -> 800 ug)

* Stroke received intranasal hyaluronidase (25 pyL x 2) + saline (25 pL x 2)
* Sham received intranasal hyaluronidase (25 pL x 2) + saline (25 pL x 2)

T s



Blinded Behavioral Assessment

Modified Neurological Severity Score (MNSS)
Surgery Date: 11/18/25

181
161
14 -

124

® 10- Group
8 Mito
D 81 Stroke

6-

4-

2-

0-

: 2 3
Postop Day

G



Blinded Behavioral Assessment

Score

18 1

16 1

14 1

124

Modified Neurological Severity Score (MNSS)
Surgery Dates: 11/18/25 + 12/03/25

ns ns ns

Group
Mito
Stroke

1 2 3
Postoperative Day

A~

Sample size

Stroken=5-1
Miton=4

Survival status

One untreated rat
died on POD1 and
one euthanized on
POD2

All treated rats were
alive by POD3

@]’ 147
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Brain MRI Outcome

e Baseline results from two normal rats
* Post-stroke images obtained from 5 stroke rats without treatment

G
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at #1 (09/16/25, 289 g)
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at #1 (09/16/25, 289 g)
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Future Plan

* December 2025 - February 2026: Establish sufficient samples in
each group for neurobehavioral assessment (main cohort)

* March — April 2026: Complete tissue analysis — neuron counting,
quantify ischemia area, other special staining. Collect additional

tissue samples as needed
* April—May 2026: Complete the image cohort (secondary)

* May - June 2026: Finalize statistical analysis and generate results
for an abstract and/or manuscript
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