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Nonsense-mediated RNA decay (NMD) plays a dual role as an RNA surveillance mechan-
ism against aberrant transcripts containing premature termination codons and as a gene
regulatory mechanism for normal physiological transcripts. This dual function is possible
because NMD recognizes its substrates based on the functional definition of a premature
translation termination event. An efficient mode of NMD target recognition involves the
presence of exon-junction complexes (EJCs) downstream of the terminating ribosome. A
less efficient, but highly conserved, mode of NMD is triggered by long 30 untranslated
regions (UTRs) that lack EJCs (termed EJC-independent NMD). While EJC-independent
NMD plays an important regulatory role across organisms, our understanding of its mech-
anism, especially in mammalian cells, is incomplete. This review focuses on EJC-inde-
pendent NMD and discusses the current state of knowledge and factors that contribute
to the variability in the efficiency of this mechanism.

Introduction
Nonsense-mediated RNA decay (NMD) is a quality control process that degrades transcripts that
contain a premature termination codon (PTC) arising from nonsense, frameshift, or splice-site muta-
tions. By degrading PTC-containing transcripts, NMD protects the cell from the accumulation of
potentially deleterious truncated protein products. NMD also acts as an additional layer of post-
transcriptional gene regulation for transcripts that mimic NMD substrates during normal biological
processes [1–4]. Discrimination of PTC-containing transcripts relies on the recognition of a transla-
tion termination event as premature due to an abnormal termination environment. An abnormal ter-
mination environment may be defined by factors such as increased distance from the poly(A) tail and
the presence of RNA binding proteins (RBPs) not typically present in the 30 UTR, such as exon junc-
tion complexes (EJCs) [5]. Once a PTC is recognized in a translation-dependent manner, the key
NMD factors UPF1, UPF2, and UPF3A/B, which are conserved from yeast to humans, assemble at
the PTC [6]. In mammals, the SURF complex forms at the PTC, consisting of UPF1, eukaryotic
release factors 1 and 3, and the UPF1-specific kinase SMG1 [5]. This assembly promotes the hyper-
phosphorylation of UPF1, which serves as the trigger for the decay of the PTC-containing mRNA by
recruited mRNA decay factors [2,5–7].
There are two variations of the NMD pathway that recognize and degrade PTC-containing tran-

scripts: (1) EJC-dependent NMD, which relies on the retention of EJCs near splice sites that are at
least 50–55 nt downstream of the PTC (Figure 1A) [8,9] and (2) EJC-independent NMD, where a
long 30 UTR is recognized (Figure 1B) [10–12]. Both variations of the NMD pathway rely on UPF1
and involve UPF2 and UPF3. However, some evidence suggests that EJC-independent NMD may be
affected more by the depletion of UPF2 and UPF3B compared with EJC-dependent NMD [5].
EJC-dependent NMD has been observed in Caenorhabditis elegans, Drosophila melanogaster, and

*These authors contributed
equally to this work.

Version of Record published:
5 May 2023

Received: 11 January 2023
Revised: 21 April 2023
Accepted: 25 April 2023

© 2023 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society 1

Biochemical Society Transactions (2023)
https://doi.org/10.1042/BST20221131

http://orcid.org/0000-0001-9039-2631


mammals and is the more efficient form of NMD, enhanced by the sustained presence of EJCs downstream of
the PTC [5,13,14]. EJC-dependent NMD has been extensively studied in mammalian systems and has been
reviewed in detail in the following articles [15–20].
EJC-independent NMD is a conserved mechanism of mRNA decay that relies on the recognition of long 30

UTRs independently of retained EJCs. Long 30 UTRs place the stop codon in an abnormal termination context
that is sufficient to trigger NMD even in the absence of downstream EJCs. Despite higher eukaryotes having
evolved EJC-dependent NMD as an additional level of regulation of gene expression that is lacking in
Saccharomyces cerevisiae, the basic mechanism of long 30 UTR discrimination in EJC-independent NMD
remains conserved across eukaryotes [13,14,21,22]. This form of NMD relies on the length of the 30 UTR to
detect the PTC, which may occur in part due to the increased distance to the poly(A) tail and differences in
sequence composition, structure, and RBP occupancy on the long 30 UTR [10,12,23–25]. While this mechanism
makes sense as a surveillance process in yeast, where the mean normal 30 UTR length is only 121 nt [26], the
significantly longer 30 UTRs of mammalian transcripts (∼1278 nt on average [27]) makes the EJC-independent
distinction of PTCs from normal stop codons more challenging. This review will delineate the current state of
knowledge on EJC-independent NMD, which is more poorly understood than EJC-dependent NMD, especially
in mammalian cells. We will first describe EJC-independent NMD in yeast, where it was discovered and is
more well characterized, followed by outlining the current knowledge on the more complex regulation of this
pathway in mammalian cells. We will then address the many ways in which the efficiency of EJC-independent
NMD can be modulated by cis and trans-acting factors, discuss the physiological importance of this form of
NMD, and highlight open questions in this field.

Figure 1. EJC-dependent versus EJC-independent NMD Mechanisms.

(A) EJC-dependent NMD requires an exon junction complex (EJC) downstream of the terminating ribosome. When this

condition is met, UPF1–3 and eRF1 bind the EJC. (B) EJC-independent NMD relies on the recognition of an abnormal

termination context in the absence of downstream EJCs. The proximity of PABPC1 to the termination codon may inhibit

EJC-independent NMD. Nucleases degrade the released transcript after ribosomal dissociation. Both pathways require UPF1

surveillance and hyperphosphorylation of UPF1 by SMG1, which causes the ribosome to release from the transcript and

subsequent transcript degradation by recruited nucleases.
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Features that trigger EJC-independent NMD
Across eukaryotes, PTCs can trigger NMD if a PTC creates an extended 30 UTR, even if this 30 UTR lacks
EJCs. In S. cerevisiae, whose genes contain few introns and lack EJCs, EJC-independent NMD triggers the deg-
radation of PTC-containing transcripts [10,25]. Studying NMD in S. cerevisiae led to the ‘faux-UTR’ model of
NMD, where long 30 UTRs are sufficient to trigger NMD [10,25,28]. The significance of a longer 30 UTR for
EJC-independent NMD appears in part to be the increased distance between the termination event and poly
(A)-binding protein (PABPC1), as positioning PABPC1 closer to the PTC antagonizes NMD [10,12,13,23].
Though studies in multiple organisms indicate that the proximity of PABPC1 to the PTC can regulate NMD
efficiency, it should be noted that neither PABPC1 nor the poly(A) tail is necessary for NMD in S. cerevisiae
[29]. Thus, although EJC-independent NMD is conserved among many eukaryotes, species-specific regulation
adds nuance to the distinction between EJC-independent and dependent NMD. In Schizosaccharomyces pombe,
for instance, NMD is enhanced by the presence of PTC-proximal introns in a splicing-dependent but
EJC-independent manner [30].
In support of the long 30 UTR model of EJC-independent NMD, transcripts containing the same open

reading frame (ORF) but different 30 UTR lengths are discriminated between by the S. cerevisiae NMD machin-
ery, with a 30 UTR of 1170 nt triggering decay but 30 UTRs < 285 nt evading NMD [28]. This NMD pathway is
largely conserved in the early branching eukaryote Tetrahymena thermophila, which lack a functional EJC and
carry out EJC-independent NMD of PTC-containing transcripts, primarily relying on the UPF protein family
[31]. Similarly, in D. melanogaster, extending the 30 UTR length from 198 nt to 396 nt following a previously
normal termination codon redefines that transcript as an NMD target [13], and in C. elegans, NMD occurs
independently of exon-exon junctions and increases in strength as the PTC is moved farther from the 30 end of
the transcript [21]. EJC-independent NMD is also conserved in Arabidopsis thaliana [22] and in mammalian
cells, where 30 UTRs > 300 nt or 420 nt, respectively, can promote NMD in a length-dependent manner
[12,23,24]. However, the regulation of EJC-independent NMD is more complex than UTR length alone, with
RBP interactions and UTR sequence and structure often playing a significant regulatory role in the efficiency
and evasion of NMD, as discussed in the next section in more detail [12,32,33].
In conjunction with 30 UTR length, factors including the sequence and structural composition of the UTR

and RNA–RBP interactions can regulate sensitivity to EJC-independent NMD in both yeast and mammals. In
yeast, the downstream sequence element (DSE), 50-TGYYGATGYYYYY-30, following a PTC can trigger
EJC-independent NMD when it is bound by protein factors including Hrp1/Nab4 and UPF1 (Upf1p in S. cere-
visiae) following premature translation termination [34–36]. In mammalian cells, genome-wide analyses of
transcripts stabilized by NMD inhibition have shown that NMD-triggering 30 UTRs are enriched for GC-rich
sequence motifs compared with non-NMD target 30 UTRs and are often predicted to be structured [37,38]. In
support of a role for 30 UTR secondary structure in NMD, inserting a stem loop near the DSE in yeast NMD
targets enhances NMD [35].
Differences in length, sequence, and structural composition of 30 UTRs can also influence RNA-RBP interac-

tions to influence NMD efficiency [12,24,38,39]. The RNA helicase UPF1 is a highly conserved NMD factor
that binds RNA tightly but nonspecifically [6]. Studies in mammalian cells have shown that the association of
UPF1 with transcripts is dependent on 30 UTR length and that 30 UTRs of NMD targets are enriched for UPF1
[23]. The GC-rich motifs present in NMD-targeted mammalian 30 UTRs also enhance UPF1 association.
Fusing the GC-rich long 30 UTR of an NMD target to a reporter gene decreased the reporter mRNA stability
in a translation and UPF1-dependent manner, and this effect was absent when four GC motifs were substituted
with adenine [38,40]. It should be noted that this enhanced association of UPF1 may rely on as yet undiscov-
ered cofactors and not solely sequence motifs. This increased UPF1 occupancy on long 30 UTRs prepares the
transcript for rapid commitment to NMD after the hyperphosphorylation of UPF1 by SMG1 and the recruit-
ment of NMD effector enzymes [6,23].
The recognition of a stop codon as premature requires translation termination at the PTC [24,41]. Recent

research using EJC-dependent NMD reporters has shown that each termination event has an equal probability
of triggering NMD, hence each termination event at a PTC on a single transcript increases the probability of
NMD [42]. Therefore, any factor that enhances translation efficiency, including splicing and EJC deposition on
a transcript irrespective of the position of the EJCs, can enhance NMD efficiency [43,44]. Previous research has
suggested that the increased distance to the poly(A) tail and UPF1 binding on NMD targets prohibit the inter-
action of PABPC1 and eRF3, decreasing termination efficiency at PTCs of transcripts with long 30 UTRs
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[24,41]. Further influencing premature termination, the increased GC content in NMD-triggering 30 UTRs is
predicted to increase RNA secondary structure around the PTC, which may also affect termination and hence,
NMD efficiency [37,38,45]. However, more recent studies have challenged the idea that translation termination
at PTCs is less efficient, as no measurable difference could be found in termination codon ribosome occupancy
[46,47]. One caveat to consider when studying EJC-independent NMD is that characteristics of the 30 UTR can
affect mRNA stability through other mechanisms, such as miRNAs that bind longer 30 UTRs and RBPs that
recognize AU-rich elements in the 30 UTR. These alternatives need to be carefully investigated as confounding
factors when altering 30 UTR composition [32,48]. Inhibition of NMD using small molecules such as the
SMG1 kinase inhibitor, SMG1i [49], can be used to confirm that observed differences in mRNA stability fol-
lowing 30 UTR modulation are due to EJC-independent NMD.

Factors that allow evasion of EJC-independent NMD
Although long 30 UTRs can trigger NMD in mammalian cells by a similar mechanism as they do in yeast, sub-
strate discrimination in EJC-independent NMD is more complex where many functional transcripts contain
long 30 UTRs [27]. Exactly how mammalian cells protect the majority of their genes containing long 30 UTRs
from NMD is not completely understood, but it is thought that certain cis- and trans-acting mechanisms of
NMD evasion may allow for transcript and environment-specific regulation of EJC-independent NMD in
higher eukaryotes (Figure 2).
Instances of long 30 UTR NMD substrate protection in trans by RBPs highlight a key protective mechanism

— inhibiting UPF1 surveillance [12,33,50]. The first and most well-characterized example is PTBP1, a splicing
factor that inhibits exon inclusion and shuttles in and out of the nucleus to facilitate RNA metabolism [51]. An
in vitro study finds that PTBP1 interacts with UPF1’s regulatory loop 1B, inhibiting NMD surveillance by trig-
gering release from transcripts [52]. Additionally, hnRNPL, also an exon inclusion inhibitor, protects long 30

UTRs from being targeted by UPF1, reducing the likelihood of transcript degradation [53]. While positioning
PABPC1 near the PTC antagonizes NMD in vitro [13,54], whether natural NMD-evading transcripts with long

Figure 2. Factors that allow evasion of EJC-independent NMD.

Trans elements that inhibit NMD include endogenous and exogenous RBPs such as PTBP1 and REV, which encumber UPF1

surveillance. Cis elements inhibit NMD by sequestering NMD-inhibiting RBPs with their structure and sequence, by promoting

readthrough and frameshifts and reinitiation, or by the lack of structural stability.
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30 UTRs use this strategy in vivo is unknown and difficult to predict. Endogenous NMD evasion might require
specialized scaffolding, facilitating specific RBP binding or localizing PABPC1 closer to a normal termination
codon, inhibiting UPF1 transcript scanning [12]. The activities of these RBPs may hold the key to understand-
ing how 30 UTRs might leverage transcript protection to stabilize themselves under normal conditions.
Viruses offer an additional platform to understand potential mechanisms of EJC-independent NMD escape.

Due to the compact nature of their genome, viruses often produce polycistronic mRNAs. Upon translation of a
50-proximal ORF, such transcripts mimic NMD substrates containing long 30 UTRs. Hence, viruses have
adapted specialized cis and trans mechanisms to evade NMD. The best-understood retroviral NMD evasion
strategy functions in cis in the Rous sarcoma virus (RSV). Immediately downstream of the gag gene of RSV, a
highly conserved 150 nt-long structure recruits the host PTBP1 with high specificity, inhibiting UPF1 and its
ability to surveil the viral transcript [33,55,56]. The Moloney Murine Leukemia Virus, an RNA virus, uses a
readthrough sequence downstream from its gag coding sequence to evade NMD despite having a ∼6000 nt
long 30 UTR [57]. This strategy is also used by the plant-targeting turnip crinkle virus (TCV), where the long
30 UTR’s ability to evade NMD is primarily dependent on the presence of readthrough elements and an
unstructured region at the beginning of the TCV long 30 UTR [58]. Viral strategies that involve trans factors in
NMD avoidance generally inhibit core NMD factors to stabilize the viral transcript or outright degrade NMD
factors. For example, coronaviruses such as SARS and MERS use the nucleocapsid protein, N, to stabilize their
∼10 kb long 30 UTRs [59]. The pea enation mosaic virus 2 also uses an NMD protective protein, p26, to trans-
port the viral genome through the plant vascular system, concomitantly protecting highly structured, long, and
endogenously GC-rich 30 UTRs [60]. It is tempting to speculate that a subset of endogenous long
UTR-containing mammalian transcripts might use similar mechanisms to circumvent EJC-independent NMD
in a context-dependent manner, although such mechanisms are yet to be deciphered.

Significance of EJC-independent NMD modulation
About one-third of the annotated transcripts in the human genome have 30 UTRs that are longer than 1 kb
(GENCODE annotation V42; [61]). Yet, most transcripts with long 30 UTRs in humans are not subject to
EJC-independent NMD [62–64]. In fact, a recent study that utilized long-read sequencing to exclude transcripts
with more than one exon in the 30 UTR did not find a correlation between UTR length and NMD efficiency
[64]. The same study also found that NMD-sensitive transcripts that lack exon–exon junctions in the 30 UTR
are enriched for upstream ORFs (uORFs), suggesting that uORFs may be an additional trigger for
EJC-independent NMD [64]. Our current understanding of factors that trigger EJC-independent NMD in
mammalian cells and the evasion of this decay mechanism is insufficient to allow an accurate prediction of
targets of this pathway and how their expression is modulated under different cellular conditions. Additionally
complicating the identification and prediction of EJC-independent NMD targets in mammalian cells is the
finding that not all splicing reactions result in the deposition of an EJC near the junction or at the expected
canonical position [65,66]. Given the variability in EJC deposition and location, identifying long 30 UTRs that
trigger NMD completely independently of EJCs is difficult [66].
A better understanding of EJC-independent NMD and its regulation is critical for several reasons.

EJC-independent NMD shapes the cellular response to stress and differentiation. For example, in yeast, copper
homeostasis is regulated through differential 30-end processing that affects 30 UTR length; therefore, this
pathway allows for isoform-specific regulation of mRNA by altering NMD sensitivity [67,68]. In mammalian
cells, binding of the long loop isoform of UPF1 (UPF1LL) to transcripts with long 30 UTRs makes them recalci-
trant to RBPs that otherwise promote NMD evasion, and this binding is exploited during the integrated stress
response to down-regulate a new set of targets that are normally immune to NMD [69]. Similarly, alternative
polyadenylation (APA) that changes the 30 UTR of a transcript can also modulate its NMD susceptibility, as
UPF1 preferentially binds and down-regulates the products of APA with long 30 UTRs [70,71]. Thus, when
APA usage is altered during cell differentiation or other physiological changes, the stability of the resulting
transcripts is dictated by NMD. During spermatogenesis, EJC-independent NMD eliminates long 30 UTR tran-
scripts, allowing a shift to a testis-specific transcriptome containing predominantly short UTR transcripts [72].
Interestingly, the differentiation of naïve cell types to more mature counterparts is often associated with a
down-regulation of NMD activity [73], suggesting that there may be added layers of regulation that allow long
UTR transcripts to become more stable in such circumstances. Additionally, PTBP1 has been shown to bind to
certain long UTR products of APA to promote their stability [70], again suggesting the delicate balance that
exists between long and short UTR isoforms of transcripts depending on the cell state and trans factor activity.
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Understanding NMD evasion by viral long 30 UTRs as well as some mammalian long 30 UTRs is necessary
to inform research on therapeutic targeting of NMD activity. In the case of viral infections, antisense oligonu-
cleotides (ASOs) could be used to prevent the binding of protective RBPs to specific regions of viral transcripts.
For genetic diseases caused by nonsense mutations that trigger efficient NMD and cause loss of gene function,
artificial tethering of RBPs that promote NMD evasion might offer a novel avenue for therapeutic development.
Similarly, better understanding of NMD evasion may also lead to therapeutic interventions to enhance NMD
on specific transcripts to counter gain-of-function genetic diseases. An example of such a disease is facioscapu-
lohumeral muscular dystrophy (FSHD), where NMD is broadly inhibited leading to aberrant stabilization of
NMD targets en masse [74]. While it is unclear to what extent loss of NMD contributes to this complex
genetic disease, strategies to enhance the NMD capacity in affected tissues would be an interesting avenue to
pursue. As our capability to develop RNA-based therapeutics improves, modulating RBP binding to 30 UTRs
could hold great promise for transcript-specific regulation of NMD.

Perspectives
• EJC-independent NMD is a pervasive and highly conserved mechanism of RNA quality

control that shapes the transcriptome.

• Our current understanding of EJC-independent NMD and the precise mechanisms of its regu-
lation across species is incomplete.

• Investigations directed at deciphering the rules and exceptions to EJC-independent NMD may
yield novel ways to combat human genetic diseases and viral infections.
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