What is ACCORDS?

Adult and Child Center for Outcomes Research and Delivery Science

ACCORDS is a 'one-stop shop' for pragmatic research:

- A multi-disciplinary, collaborative research environment to catalyze innovative and impactful research
- Strong methodological cores and programs, led by national experts
- Consultations & team-building for grant proposals
- Mentorship, training & support for junior faculty
- Extensive educational offerings, both locally and nationally

ACCORDS Upcoming Events

October 25, 2023 Zoom	ACCORDS/CCTSI Community Engagement Forum What is Representation? Community Voice and Identity Through Advisory Boards and Partnerships
November 1, 2023 AHSB 2200/2201, Zoom	Ethics, Challenges, & Messy Decisions in Shared Decision Making Ethical Issues in Shared Decision Making Presented by: Drs. Laura Scherer, Matthew Wynia, and Dan Matlock
November 9 & 16, 2023 9:00-3:00pm MT Zoom	Overview of Dissemination and Implementation (D&I) Science Workshop Lead facilitators: Tina Studts, PhD and Borsika Rabin, PharmD, PhD
November 20, 2023 AHSB 2200/2201, Zoom	<u>Statistical Methods for Pragmatic Research</u> Randomization-based Inference for Cluster Randomized Trials Presented by: Dustin J. Rabideau, PhD (Massachusetts General Hospital)
December 6, 2023 AHSB Conf. Center, Zoom	Ethics, Challenges, & Messy Decisions in Shared Decision Making Incorporation of Patient Reported Outcome Measures in Shared Decision-Making in Breast Surgical Oncology Presented by: Sarah Tevis, PhD
December 18, 2023 AHSB 2200/2201, Zoom	Statistical Methods for Pragmatic Research Presented by: Maren Olsen, PhD (Duke)

*all times 12-1pm MT unless otherwise noted

Statistical Methods for Pragmatic Research 2023-2024 Seminar Series

Presented by: Heather Smyth, PhD

A (Re)Introduction to Statistical Mediation

@AccordsResearch

A (Re)Introduction to Statistical Mediation

4

HEATHER SMYTH, PHD – RESEARCH ASSOCIATE CENTER FOR INNOVATIVE DESIGN AND ANALYSIS

- PhD in Quantitative Psychology from Arizona State University
 - Mediation, causal inference, individualized effects
- Research Associate in the Center of Innovative Design and Analysis (CIDA)
 - Faculty in the Colorado School of Public Health, Department of Biostatistics and Informatics
 - Collaborative Statistician with
 - ► ACCORDS
 - College of Nursing
 - Rocky Mountain Prevention Research Center
 - School of Medicine, Department of Endocrinology

Presentation Outline

- NIH Stage Model / Purpose of Mediation
- Conceptual Definition of Mediation
- Comparison of Mediation with other Variable Functions
- Overview of Mediation Methods
- Q&A

NIH Stage Model

"Examination of mechanisms of behavior change is encouraged in every stage of intervention development."

https://www.nia.nih.gov/research/dbsr/nih-stage-model-behavioral-intervention-development

Mechanisms to Mediation

- Mediator: a variable that is intermediate in the causal process relating an independent variable and a dependent variable.
- intervening variable, process variable, intermediate endpoint, surrogate endpoint

indirect effect, mediated effect

Causal Third-Variable Effects

Three causal third-variable effects a) mediator, b) confounder, c) collider

10

Other (non-causal) Third Variables

Moderators - often demographic variables; interactions

Covariates – reduce unexplained variability in Y, but doesn't change relation between X and Y

Suppressors/Distorters – collinearity with predictors suppress relationship between X and Y or cause it to change signs

Redundant Measures – construct overlap; Jingle-Jangle fallacies

11

Commonly Mistaken for Mediators

Moderator – affects the strength of a relation between variables, but is not in the causal sequence

Covariate – related to X and/or Y, but does not change the strength of the relation and is *not in the causal sequence*

Confounder – related to both X and Y, changes the relation when controlled for, but is *not in the causal sequence*

Collider - related to both X and Y, changes the relation when controlled for, but is *not in the causal sequence*

Why would you use a mediation model?

Mediation for Explanation

- •There is an observed relation between variables, and you want to explain it
 - A new treatment improves outcomes for children with multiple chronic illnesses. How does it work?

Mediation by Design

- Apply intervention that manipulates a mediator that has a known causal effect on the outcome
- You know vitamin C reduces scurvy, so you create an intervention to increase orange consumption

Scientific Theory

Research Question

13

This Photo by Unknown Author is licensed under CC BY-NC-ND

Mediation Timeline

Elaboration

B&K Causal Steps

Coefficient Methods

Potential Outcomes

14

• Hyman, 1955

• Lazarsfeld, 1955

- Judd & Kenny, 1981
- Baron & Kenny, 1986

- MacKinnon et al., 2002
- MacKinnon et al., 2004
- VanderWeele, 2014
- Imai et al., 2011
- MacKinnon et al., 2020

1. Total Effect

 Independent variable is related to a dependent variable

B&K Causal Steps

2. "Action theory"

B&K Causal Steps

16

 Independent variable is related to potential mediator

3. "Conceptual theory"

B&K Causal Steps

17

Mediator is related to outcome while controlling for an independent variable

18

The Total Effect is not Significant

 $T_{1} = 1$

TABLE I.	Conditions with significant mediation and nonsignificant into	ervention effects
Condition	Circumstance	Effects
I.a)	When $ab = c$ with large <i>n</i> and small effects.	ab = c
I.b)	When $ab = c$ with small <i>n</i> and large effects.	ab = c
II.	When ab and c' have opposing signs.	ab = +, c = -
		ab = -, <i>c</i> ' = +
III.	With multiple mediators, when $b_1b_2b_3 = ab$.	$b_1b_2b_3 = ab$
IV.	When two specific mediated effects have opposing signs.	$a_1b_1 = +, a_2b_2 = -$
		$a_1b_1 = -, a_2b_2 = +$

Conditions with significant modiation and nonsignificant intervention officity

O'Rourke, H. P., & MacKinnon, D. P. (2018). Reasons for Testing Mediation in the Absence of an Intervention Effect: A Research Imperative in Prevention and Intervention Research. *Journal of studies on alcohol and drugs*, 79(2), 171–181. https://doi.org/10.15288/jsad.2018.79.171

Empirical Estimates of Sample Sizes Needed for .8 Power

Test	SS	SH	SM	SL	HS	HH
BK ($\tau' = 0$)	20,886	6,323	3,039	1,561	6,070	1,830
BK ($\tau' = .14$)	562	445	427	414	444	224
BK ($\tau' = .39$)	531	403	402	403	405	158
BK ($\tau' = .59$)	530	404	402	403	406	158

Fritz, M. S., & Mackinnon, D. P. (2007). Required Sample Size to Detect the Mediated Effect. *Psychological Science*, 18(3), 233-239. https://doi.org/10.1111/j.1467-9280.2007.01882.x

Coefficient Methods

Standard Tests of Mediated Effects

- Joint Significance
 - $\blacktriangleright \widehat{a}$ and \widehat{b} are both significant
- Product of Coefficients (Sobel standard error test is common)

▶ **â b**

Product of Coefficients (Distribution of Product Confidence Limits / Bootstrapping)

▶ **â b**

MacKinnon, D. P., Lockwood, C. M., Hoffman, J. M., West, S. G., & Sheets, V. (2002). A comparison of methods to test mediation and other intervening variable effects. *Psychological Methods*, 7(1), 83-104.

Tells you if there is mediation, but not the magnitude of the effect

Tells both significance and magnitude of effect, several options for calculating standard errors

My General Recommendation

Estimate the mediated effect using the product of coefficients method and bootstrapped standard errors

Mediation Calculator

Research Methods, 43, 692-700.

of coefficients method 95% CI is [-0.655, 0.66]. Density Plot and Confidence Interval

Citation

Results

RMediation

â:
.02
<i>b</i> :
.05
SE _â :
.5
SE6:
.6
α:
.05
ρ:
0
Submit

Information: This web application computes a confidence interval (CI) for the mediated effect and the product of two normal random variables.

To compute the confidence interval for the mediated effect, $a \cdot b$, using the distribution of the product of the

Tofighi, D. & MacKinnon, D. P. (2011). RMediation: An R package for mediation analysis confidence intervals.[PDF] Behavior

For $\hat{a} = 0.02$ (SE = 0.5) and $\hat{b} = 0.05$ (SE = 0.6), the indirect effect estimate is 0.001 (SE = 0.301). The distribution of the product

https://amplab.shinyapps.io/MEDCI/

https://davidakenny.net/cm/mediate.htm

The recommended method can be expanded to accommodate:

- Multiple mediators
- Longitudinal effects
- Clustered / Multilevel designs
- Categorical outcomes
- Latent variables
- Mixture Models
- Time-to-event data

 $\blacktriangleright n = 1 \text{ data}$

Understand your Assumptions

26

This Photo by Unknown Author is licensed under <u>CC BY-NC-ND</u>

Assumptions from Traditional Mediation

MacKinnon, D. P. (2008). Introduction to statistical mediation analysis. Routledge.

Reality: Randomly assign two groups of people to different treatments and compare groups means Give treatment A to participants and observe outcome. Then build a time machine, go back in time, replace with treatment B, and observe the outcome

Holland, P. W. (1986). Statistics and causal inference. Journal of the American Statistical Association, 81(396), 945-960.

30

Aim of Potential Outcome Framework

Redefine effects of interest as the difference between potential outcomes

Observed -

Unobserved counterfactual

Identify the assumptions necessary to infer values for the unobserved counterfactual.

Mediation and Causation

 We said earlier that a mediator is part of a causal process...
 Mediator M
 Dependent Variable X

...but can we say that all three paths are causal?

Confounding in Mediation

- Randomizing X is expected to control confounding for two of the three pathways
- Study design and statistical control necessary for the third pathway
 - Sequential Double Randomization
 - Concurrent Double Randomization
 - Parallel Randomization
 - Inverse Probability Weighting
 - Sequential G-Estimation
 - Sensitivity Analysis

Valente, M. J., Pelham, W. E. I., Smyth, H. L., & MacKinnon, D. P. (2017). Confounding in statistical mediation analysis: What it is and how to address it. *Journal of Counseling Psychology*, 64(6), 659-671.

Inferring Counterfactuals from Expectations

Traditional Assumptions

No Interference (SUTVA #1)

Consistency (SUTVA #2)

Positivity

Exchangeability (Confounders)

No Interference (SUTVA #1)

- One person's exposure to treatment does not influence another person's potential outcome
- No unmodeled spillover effects

Vanderweele, T. J. (2015). Explanation in causal inference: Methods for mediation and interaction. Oxford University Press.

Consistency (SUTVA #2)

- "No hidden variations of treatment" assumption
- Well-specified intervention with unambiguously defined treatment
- The potential outcome of an individual assigned to Treatment A is equal to the observed outcome of an individual given Treatment A.

Cole, S. R., & Frangakis, C. E. (2009). Commentary: The Consistency Statement in Causal Inference: A Definition or an Assumption? *Epidemiology, 20(1), 3-5. http://www.jstor.org.ezproxy1.lib.asu.edu/stable/25662662*

Vanderweele, T. J. (2015). Explanation in causal inference: Methods for mediation and interaction. Oxford University Press.

Positivity

An individual has a non-zero probability of treatment assignment to either treatment condition

Cole, S. R., & Frangakis, C. E. (2009). Commentary: The Consistency Statement in Causal Inference: A Definition or an Assumption? *Epidemiology, 20(1), 3-5. http://www.jstor.org.ezproxy1.lib.asu.edu/stable/25662662*

Exchangeability – No Unmeasured Confounders

Potential outcomes among treatment conditions are comparable

No unmeasured confounders of X and Y	No unmeasured confounders of M and Y
• Randomize X	 Double randomization designs Sensitivity analysis, IPW, G-estimation
No unmeasured confounders of X and M	No confounders of M and Y are affected by X
• Pandamiza V	

- Pirlott, A. G., & MacKinnon, D. P. (2016). Design approaches to experimental mediation. *Journal of Experimental Social Psychology, 66, 29-38.* https://doi.org/10.1016/j.jesp.2015.09.012
- Valente, M. J., Pelham, W. E. I., Smyth, H. L., & MacKinnon, D. P. (2017). Confounding in statistical mediation analysis: What it is and how to address it. Journal of Counseling Psychology, 64(6), 659-671.
- Vanderweele, T. J. (2015). Explanation in causal inference: Methods for mediation and interaction. Oxford University Press.

Valente, M. J., Rijnhart, J. J. M., Smyth, H. L., Muniz, F. B., & Mackinnon, D. P. (2020). Causal Mediation Programs in R, Mplus, SAS, SPSS, and Stata. Structural equation modeling: a multidisciplinary journal, 27(6), 975-984. https://doi.org/10.1080/10705511.2020.1777133

Heather.Smyth@CUAnschutz.Edu

40

Suggested Reading - 1

Fritz, M. S., & Mackinnon, D. P. (2007). Required Sample Size to Detect the Mediated Effect. Psychological Science, 18(3), 233-239. https://doi.org/10.1111/j.1467-9280.2007.01882.x

Hertzog, M. (2018). Trends in mediation analysis in nursing research: improving current practice. Western journal of nursing research, 40(6), 907-930.

Hyman, H. (1955). Survey design and analysis: Principles, cases and procedures. The Free Press.

Imai, K., Keele, L., Tingley, D., & Yamamoto, T. (2011). Unpacking the black box of causality: Learning about causal mechanisms from experimental and observational studies. *American Political Science Review*, 105(4), 765-789.

Krause, M. R., Serlin, R. C., Ward, S. E., Rony, Y. Z., Ezenwa, M. O., & Naab, F. (2010). Testing mediation in nursing research: beyond Baron and Kenny [Journal Article]. *Nursing Research, 59(4), 288-294.* https://doi.org/10.1097/NNR.0b013e3181dd26b3

Lazarsfeld, P. F. (1955). Interpretation of statistical relations as a research operation. The language of social research: A reader in the methodology of social research, 115-125.

MacKinnon, D. P., Lockwood, C. M., Hoffman, J. M., West, S. G., & Sheets, V. (2002). A comparison of methods to test mediation and other intervening variable effects. *Psychological Methods*, 7(1), 83-104.

MacKinnon, D. P., Lockwood, C. M., & Williams, J. (2004). Confidence Limits for the Indirect Effect: Distribution of the Product and Resampling Methods. *Multivariate Behavioral Research*, 39(1), 99-128. https://doi.org/10.1207/s15327906mbr3901_4

Suggested Reading - 2

MacKinnon, D. P., & Pirlott, A. G. (2015). Statistical approaches for enhancing causal interpretation of the M to Y relation in mediation analysis. *Personality and Social Psychology Review*, 19(1), 30-43.

41

MacKinnon, D. P., Valente, M. J., & Gonzales, O. (2020). The correspondence between causal and traditional mediation analysis: The link is the mediator by treatment interaction. *Prevention Science*, 21(2), 147-157.

O'Rourke, H. P., & MacKinnon, D. P. (2018). Reasons for testing mediation in the absence of an intervention effect: A research imperative in prevention and intervention research. *Journal of Studies on Alcohol and Drugs*, 79(2), 171-181. https://doi.org/10.15288/jsad.2018.79.171

Pirlott, A. G., & MacKinnon, D. P. (2016). Design approaches to experimental mediation. *Journal of Experimental Social Psychology*, 66, 29-38. https://doi.org/10.1016/j.jesp.2015.09.012

Valente, M. J., Pelham, W. E. I., Smyth, H. L., & MacKinnon, D. P. (2017). Confounding in statistical mediation analysis: What it is and how to address it. *Journal of Counseling Psychology*, 64(6), 659-671.

Valente, M. J., Rijnhart, J. J. M., Smyth, H. L., Muniz, F. B., & Mackinnon, D. P. (2020). Causal Mediation Programs in R, Mplus, SAS, SPSS, and Stata. *Structural equation modeling: a multidisciplinary journal*, 27(6), 975-984. https://doi.org/10.1080/10705511.2020.1777133

VanderWeele, T. J. (2014). A unification of mediation and interaction: a four-way decomposition. *Epidemiology* (Cambridge, Mass.), 25(5), 749-761.

EXTRA SLIDES

Measures of effect size can tell us how meaningful a mediated effect is, regardless of sample size

- Effect sizes for individual paths
 - Correlations (r_{XY}, r_{XM}) and partial correlations $(r_{YX,M}, r_{YM,X})$
 - ► Cohen's guidelines .1 = small, .3 = medium, .5 = large
 - Standardized regression coefficients (\hat{c} and \hat{a}) (\hat{c} and \hat{b})
 - ► Unit of change in DV for a 1 standard deviation change in IV

Effect sizes for mediated effect

- Proportion/Ratio
 - Proportion of total effect that is mediated $\frac{\hat{a} \hat{b}}{\hat{c}}$
 - ▶ The mediated effect explains _% of the total effect of X on Y

- Ratio of mediated effect to direct effect $\frac{\hat{a} \hat{b}}{\hat{c}}$
 - ▶ The mediated effect is _ as large as the direct effect

Effect sizes for mediation effect

► R²

46

Fairchild, A.J., MacKinnon, D.P., Taborga, M.P. *et al.* R² effect-size measures for mediation analysis. *Behavior Research Methods* **41**, 486–498 (2009). https://doi.org/10.3758/BRM.41.2.486

Effect sizes for mediated effect

Standardized

- Product of standardized coefficients
- ► d effect sizes
 - ► Standardized_{**a**} $\hat{b} = \frac{\hat{a} \hat{b}}{s_y}$
 - ▶ A unit change in mediated effect is associated with a _ unit change in standard deviations of Y

Research Question

Model Assumptions

Potential Outcomes Mediation

Redefine effects of interest as the difference between potential outcomes

- Define all the possible treatment/mediator combinations
 - Easy when X and M are binary
 - Alternatively, use mean values, or clinically significant cutoffs

Nested Counterfactual Notation

Table 1 Nested Counterfactuals for Single Mediator Model

Y(1, M(1))	Y at X=1, M at natural value of m for X=1
Y(0, M(0))	Y at X=0, M at natural value of m for X=0
Y(0, M(1))	Y at X=0, M at natural value of m for X=1
Y(1, M(0))	Y at X=1, M at natural value of m for X=0
Note: Counterf	actuals in red cannot be observed.

Causal Estimands⁵¹

Total Natural Indirect Effect (TNIE) = E[Y(1, M(1)) - Y(1, M(0))]

Pure Natural Indirect Effect (PNIE) = E[Y(0, M(1)) - Y(0, M(0))]

Total Natural Direct Effect (TNDE) = E[Y(1, M(1)) - Y(0, M(1))]

Pure Natural Direct Effect (PNDE) = E[Y(1, M(0)) - Y(0, M(0))]

Controlled Direct Effect (CDE) = **E[Y(1, m) – Y(0, m)]**

Total Effect (TE) = **E[Y(1, M(1)) - Y(0, M(0))]**

52

Sidebar: The XM-Interaction

$Y = i_3 + bM + c'X + hXM + e_3$

- MacKinnon, D. P., Valente, M. J., & Gonzales, O. (2020). The correspondence between causal and traditional mediation analysis: The link is the mediator by treatment interaction. Prevention Science, 21(2), 147-157.
- Rijnhart, J. J. M., Valente, M. J., Smyth, H. L., & Mackinnon, D. P. (2021). Statistical Mediation Analysis for Models with a Binary Mediator and a Binary Outcome: the Differences Between Causal and Traditional Mediation Analysis. *Prevention Science*. https://doi.org/10.1007/s11121-021-01308-6

Potential Outcomes Estimators

Effect	Potential outcomes notation	Causal estimator
TNIE	$E[Y_{1}(1, M_{1}(1)) - Y_{1}(1, M_{1}(0))]$	ba + ha
PNIE	$E[Y_{i}(0, M_{i}(1)) - Y_{i}(0, M_{i}(0))]$	ba
TNDE	$E[Y_{i}(1, M_{i}(1)) - Y_{i}(0, M_{i}(1))]$	$c' + hi_l + ha$
PNDE	$E[Y_{1}(1, M_{1}(0)) - Y_{1}(0, M_{1}(0))]$	$c' + hi_1$
CDE	$E[Y_{1}(1, m) - Y_{1}(0, m)]$	<i>c</i> '+ <i>hm</i>
TE	$E[Y_{1}(1, M_{1}(1)) - Y_{1}(0, M_{1}(0))]$	$c' + hi_1 + ba + ha$

 Valente, M. J., Rijnhart, J. J. M., Smyth, H. L., Muniz, F. B., & Mackinnon, D. P. (2020). Causal Mediation Programs in R, Mplus, SAS, SPSS, and Stata. Structural equation modeling: a multidisciplinary journal, 27(6), 975-984. https://doi.org/10.1080/10705511.2020.1777133

• VanderWeele, T. J. (2014). A unification of mediation and interaction: a four-way decomposition. *Epidemiology (Cambridge, Mass.), 25(5), 749-761.*