What is ACCORDS?

Adult and Child Center for Outcomes Research and Delivery Science

ACCORDS is a 'one-stop shop' for pragmatic research:

- A multi-disciplinary, collaborative research environment to catalyze innovative and impactful research
- Strong methodological cores and programs, led by national experts
- Consultations & team-building for grant proposals
- Mentorship, training & support for junior faculty
- Extensive educational offerings, both locally and nationally

ACCORDS Upcoming Events

March 6, 2024 AHSB Room 2002, Zoom	Ethics, Challenges, & Messy Decisions in Shared Decision Making Critical Conversations: Health Equity Considerations for Working With and In Diverse Communities Presented by: Channing Tate, PhD, MPH; Demetria Bolden, PhD, MBA; Lucinda Kohn, MD, MHS, Miria Kano,			
March 11, 2024 AHSB 2200/2201, Zoom	Statistical Methods for Pragmatic Research Pragmatic Statistical Learning: From Data to Interpretable Insights Presented by: Ryan Peterson, PhD & Kathryn Colborn, PhD			
April 3, 2024 AHSB Room 2002, Zoom	Ethics, Challenges, & Messy Decisions in Shared Decision Making Am Example of Implementing Shared Decision Making with the SHARE Project Presented by: Laura Scherer, PhD; Chris Knoepke, PhD, MSW, LCSW			
April 15, 2024 AHSB 2200/2201, Zoom	Statistical Methods for Pragmatic Research Presented by: Michael Matheny, PhD			
April 26, 2024 AHSB 2200/2201, Zoom 11am-1pm MT	ACCORDS/CCTSI Community Engagement Showcase			
May 20, 2024 AHSB 2200/2201, ZoomStatistical Methods for Pragmatic Research Planning a Pragmatic Effectiveness Trial with a Factorial Design by Targeting the Posterior D Presented by: Keith Goldfeld, DrPH, MS, MPA/MURP				

*all times 12-1pm MT unless otherwise noted

COPRH Con

Colorado Pragmatic Research in Health Conference

Innovations in Pragmatic Research Methods

From Data to Equity, Policy, and Sustainability

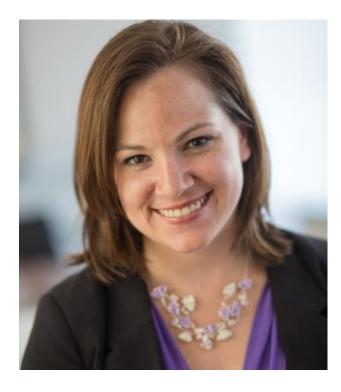
June 5 - 6, 2024 | 10am-3:30pm MT

UNIVERSITY OF COLORADO CHILDREN'S HOSPITAL COLORADO Registration is open now at <u>www.COPRHCon.com</u>

Join ACCORDS D&I Science Program!

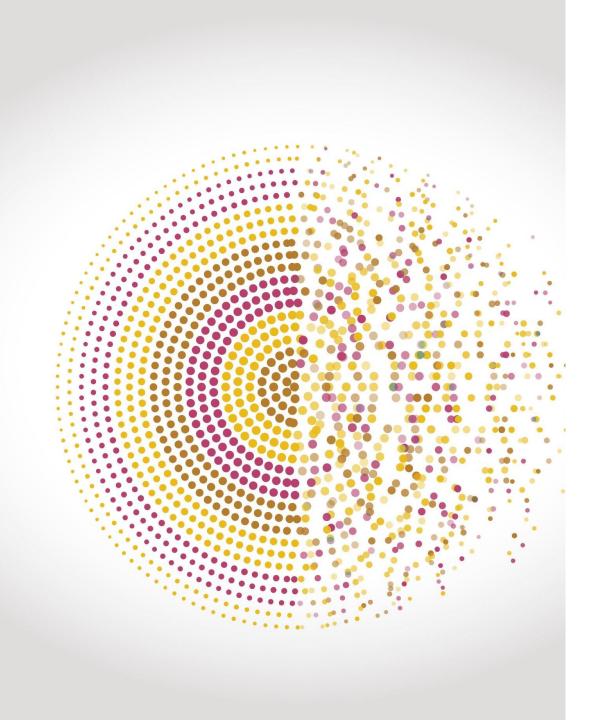
ACCORDS UNIVERSITY OF COLORADO CHILDREN'S HOSPITAL COLORADO

Statistical Methods for Pragmatic Research Seminar Series 2023-2024 seminar series



Rashelle Musci, PhD

Latent Class Analysis: Assumptions and Extensions



Latent Class Analysis: Assumptions and Extensions

Rashelle J. Musci, PhD

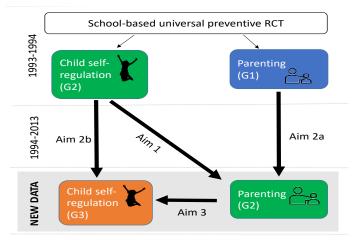
Departments of Mental Health, Biostatistics, and Population, Family and Reproductive Health

Johns Hopkins Bloomberg School of Public Health

Training:

University of California, Davis: BS (Neurobiology, Physiology, and Behavior) University of California, Davis: MS (Child Development) University of California, Davis: PhD (Human Development Johns Hopkins SPH & School of Medicine, Post-Doctoral Fellowship

Baltimore Generations Project



ECH Environmental on Child Health A program suppo Data Analysis Center

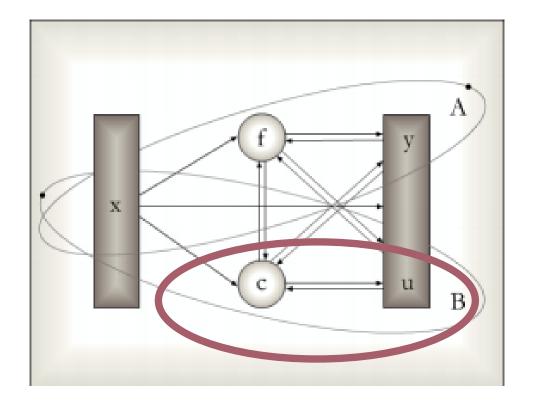
Within the harmonized dataset, we will identify the impacts of prevention programs in early childhood on long-term outcomes including 1) suicidal ideation, attempt and death, and 2) depressive, anxious, and psychotic symptoms and disorders. Harmonizing data from existing cohorts to investigate environmental exposures -physical, chemical, biological, social, behavioral, natural and built environments – on child health and development

Figure 1: Study overview

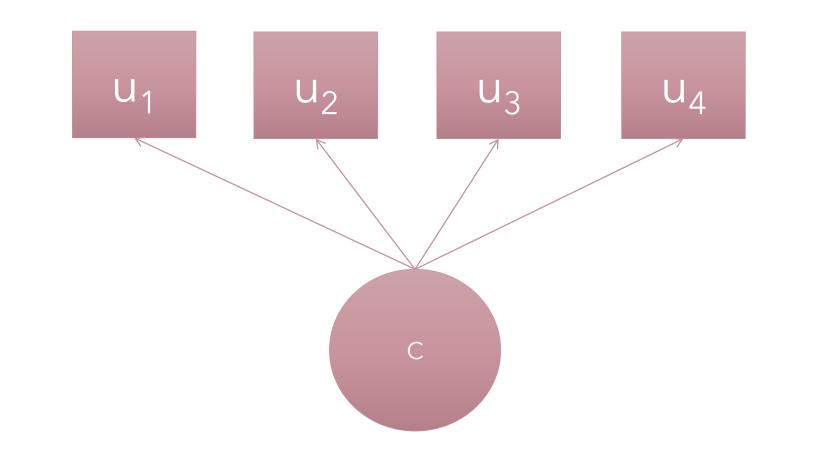
What is latent class analysis?

- + A subset of finite mixture models formulated as a mixture of generalized linear models
- Focuses on finding similarities and differences among people
- For a given variable, the observed distribution of values may be a "mixture" of two or more subpopulations whose membership is unknown
- Every individual has a set of probabilities for membership in classes

Modeling framework



- + F: continuous latent variable
- + C: categorical latent variable
- + Y: continuous observed variable
- + U: discrete observed variable
- + T: continuous event time
- + X: observed continuous/ categorical covariate



A sprinkle of formulas

- + The conditional probability for each u given c is parameterized in terms of a logistic regression
- + In the case of a binary u_j, coded 0/1, the conditional probability simplifies to:

+
$$Pr(u_j = 1|c=k) = 1 - (1/1 + exp(-\tau_{j,k}))$$

 $= 1/1 + \exp(\tau_{j,k})$

+ Such that $\tau_{j,k}$ =-logit(u_j)

Estimating a LCA model

- + Statistical model fit
 - Log-likelihood
 - BIC = $-2LL + d \log(n)$,
 - Lo-Mendell-Rubin test (tech11)
 - BLRT (tech14)
 - Standardized residuals

+ Model usefulness

- Substantive interpretation
- Classification quality
 - Classification tables
 - Entropy

How does it work?

- + Estimation done using the EM (expectationmaximization) algorithm
 - Starts with a random split of people into classes
 - Reclassify based on an improvement criterion
 - Reclassify until the best classification of people is found
 - Best classification represents the best likelihood value

More practical issues

+ Sample size

There is no set minimum sample size

Bare minimum would be around n=20 (??!!)

- + Sample size and outcomes influence type and number of classes
- + Within-class model used determines the type and number of classes

Classes are being driven by what you allow to vary within classes

Let's work through an example!

Development and Psychopathology (2023), **35**, 1358–1370 doi:10.1017/S0954579421001255

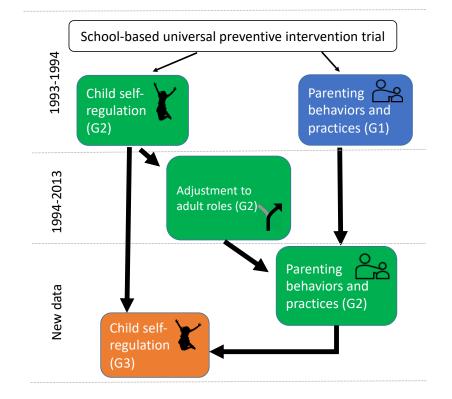
Regular Article

Self-control in first grade predicts success in the transition to adulthood

Sara B. Johnson^{1,2,3} , Kristin M. Voegtline^{1,2}, Nicholas Ialongo³, Karl G. Hill⁴ and Rashelle J. Musci³ ¹Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, USA, ²Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA, ³Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA and ⁴University of Colorado, Institute of Behavioral Science, Boulder, CO, USA

The Baltimore Generations Study

- + This study leverages an existing two-generation cohort of predominately low/middle income African American families in Baltimore (i.e., G1, G2)
- + The primary aim is to explore the impact of early selfregulation on outcomes during the transition to adulthood



Methods

- Participants
 - 678 1st graders (M=6.2y, +/-0.34y)
 - Baltimore City Public Schools
 - 53.4% male, 86.3 % Black, 68.3% free or reduced lunch
 - Retention to adult follow-up ~80%
- Assessment
 - Measures of a variety of constructs were collected from participants, parents, and teachers
 - For more information on the intervention see lalongo et al. (1999)

Measures

Child Self-Regulation, Teacher Report:

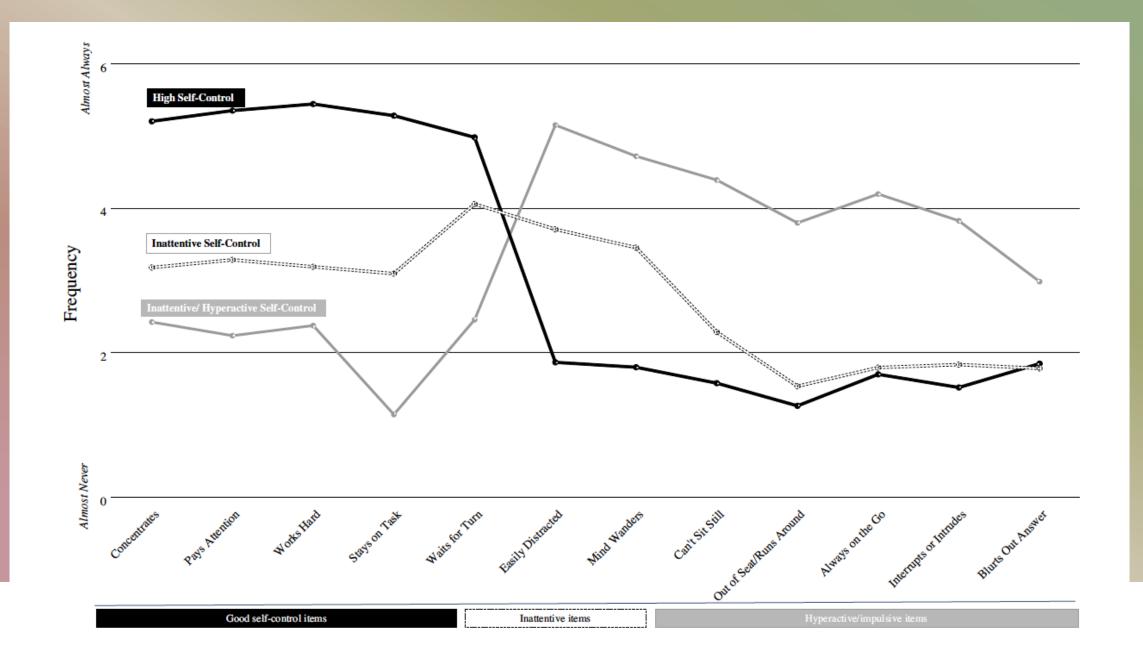
- + Teacher Observation of Classroom Adaptation-Revised (TOCA-R)
- + Brief measure of child's adequacy of performance on core classroom tasks
- + 6 pt. Likert: Almost Never=1 to Always=6

Young adult outcomes, self-report:

- + On-time high school graduation
- + College participation
- + Teenage pregnancy
- + Substance use disorder
- + Incarceration
- + Criminal justice system involvement

Fitting our latent class variable

No. of classes	# of free par.	Log Likelihood	BIC	LRT	Entropy	Smallest Class
2	40	-12840.2	25941.1	3486.3, <0.001	0.95	306 (45.5%)
3	56	-12184.4	24733.3	1312.0, 0.002	0.94	112 (16.7%)
4	72	-11921.8	24312.4	525.0, 0.53	0.91	99 (14.7%)
5	88	-11689.1	23951.1	465.5, 0.54	0.92	73 (10.9%)

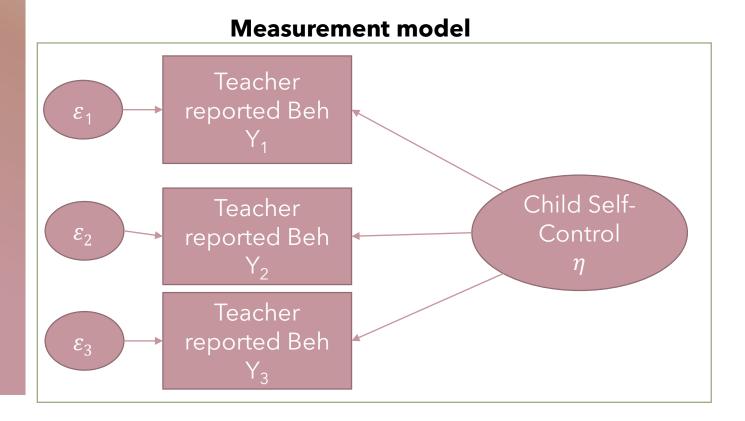


Moving beyond the measurement model

- + Using an observed variable as a predictor of the latent categorical variable
- + Using the latent categorical variable as a predictor of an observed variable

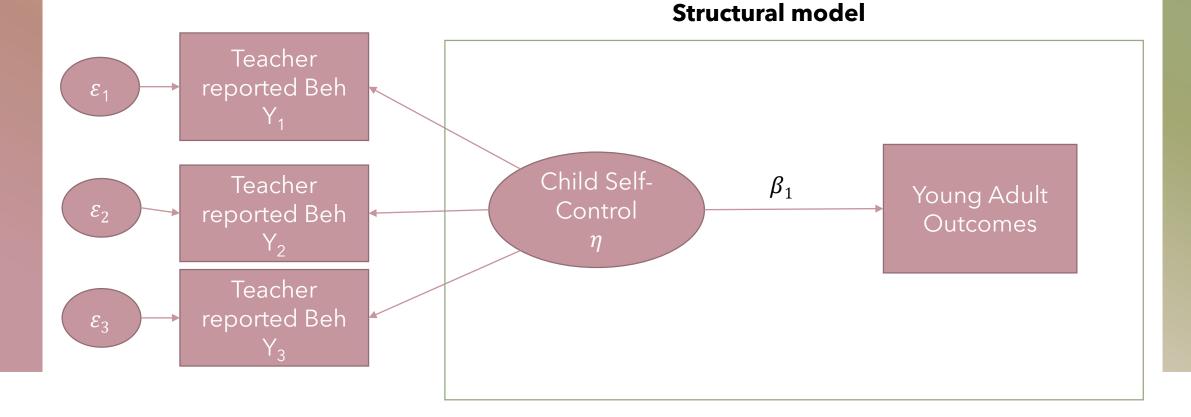
Structural and Measurement Models

+ Does self-control in childhood predict outcomes in young adulthood?



Structural and Measurement Models

+ Does self-control in childhood predict outcomes in young adulthood?



Latent Class regression Methods

+ **Automatic methods:** utilize in-software code to assess relationships

- + **3 step methods:** allow you to have more control over how the relationship is estimated
 - BCH weights or Logit methodologies

BCH method

- Described by Vermunt (2010), simulations in Bakk & Vermunt (2014)
- Uses a weighted multiple group analysis, groups correspond to the latent class
 - Weights reflect the measurement error of the latent class variable
 - Class shifting doesn't occur because the classes are 'known'
- Performs well when the variance of the aux variable differs substantially across classes

Does self-control in childhood predict outcomes in young adulthood?

		Latent classes of self-control (SC)			
		High (48.1%)	Inattentive (35.4%)	Inattentive/hyperactive (16.6%)	
Outcomes	Full sample (100%)	[1]	[2]	[3]	Pairwise comparisons ($p < .05$)
On-time HS graduation*	56.3	67.3	51.1	31.7	1>2; 1>3
College participation*	44.7	53.9	38.4	28.4	1>2; 1>3
Incarceration	9.4	6.0	11.4	15.9	-
CJS involvement [^]	22.7	17.1	29.5	25.0	1<2; 1<3
Teen pregnancy [^]	47.7	44.4	53.4	44.4	1<2
Substance use disorder	13.0	11.7	12.5	18.7	_

Notable advances in LCA

+ Confirmatory LCA

Should be used when existing literature readily points to a class structure

Organizational Research Methods Volume 21, Issue 4, October 2018, Pages 983-1001 © The Author(s) 2017, Article Reuse Guidelines https://doi.org/10.1177/1094428117747689

Article

Confirmatory Latent Class Analysis: Illustrations of Empirically Driven and Theoretically Driven Model Constraints

Sarah J. Schmiege¹, Katherine E. Masyn², and Angela D. Bryan³

Notable advances in LCA

- + Multi-level latent class analysis
 - Useful when trying to understand how latent classes at the individual level work at level 2.
 - See Henry & Muthén (2010) for a nice tutorial (with code!)

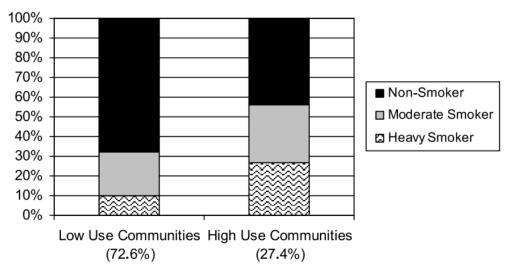


FIGURE 8 Non-parametric multilevel latent class solution, C = 3, CB = 2.

Notable advances in LCA

+ Easier methods for testing and handling instances of measurement non-invariance

DOI: 10.1111/cdev.13691

EMPIRICAL ARTICLE

CHILD DEVELOPMENT

Latent classes of aggression and peer victimization: Measurement invariance and differential item functioning across sex, race-ethnicity, cohort, and study site

Amie F. Bettencourt^{1,2} | Rashelle J. Musci² | Katherine E. Masyn³ | Albert D. Farrell⁴

Measurement invariance

- + statistical property of measurement that indicates that the same construct is being measured across specified covariates.
- A simple example: two individuals (i, j) in the same latent class (k) but have different values on a covariate (x)
 - A latent class indicator U has measurement invariance for class k with respect to X IF those two individuals have the same expected response to U

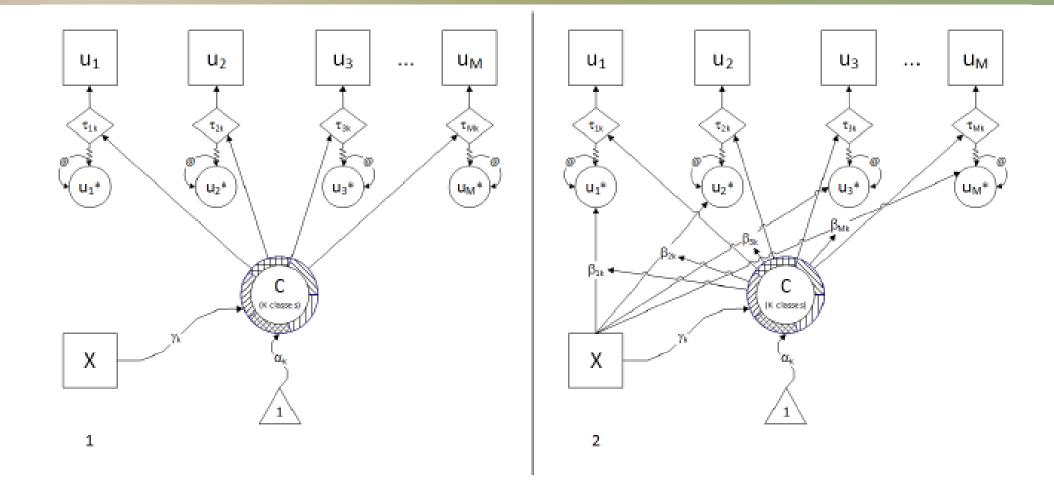


Figure 3. Path diagrams for (1) the no-DIF latent class MIMIC model M1.0 of Step 1 and (2) the all-DIF latent class MIMIC model M1.1 of Step 1.

Additional considerations

Statistical power can be challenging to address with mixture modeling

We have to rely on simulation studies or prior work to support our estimated sample sizes

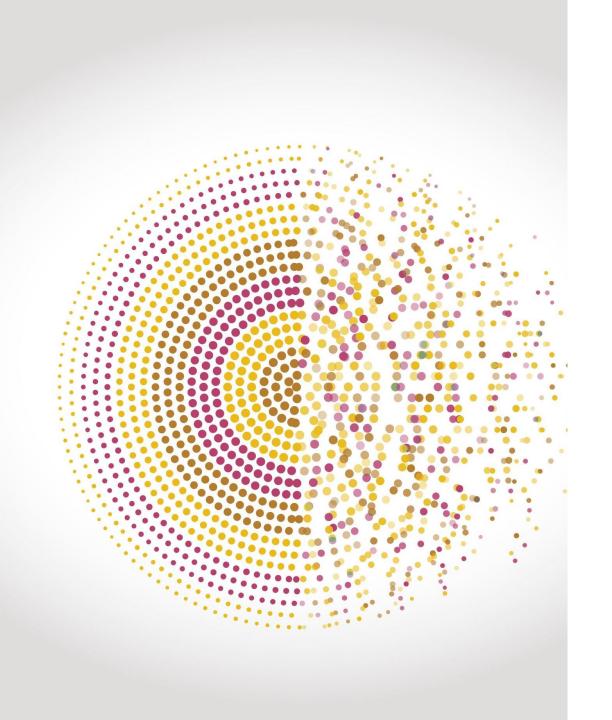
+ See Kim, 2012 and Dziak et al., 2014

Missing	Separation	Classes	Indicators	Parameters	Required Sample Size
Complete	High	2	4	15	200
	U		7	18	200
		6	4	31	300
			7	34	400
	Low	2	4	15	700
			6	17	500
			8	19	500
			10	21	500
		6	4	15	2,400
			5	16	1,500
			6	17	1,200
			7	18	1,100
			8	19	1,000
			9	20	1,000
			10	21	800
20% missing	High	2	4	15	200
	U		7	18	200
		6	4	31	400
			7	34	300
		2	4	15	800
			6	17	600
			8	19	600
			10	21	300
		6	4	15	3,000
			5	16	2,000
			6	17	1,600
			7	18	1,600
			8	19	1,200
			9	20	1,100
			10	21	1,100

Common Latent variable Software & Programs

+ Mplus

- + Lavaan or SEM in R (among other packages)
- + SEM and GSEM in Stata
- + Latent Gold
- + SAS



Thank you!

Feel free to reach out: rmusci1@jhu.edu