Randomization-Based Inference for Cluster Randomized Trials

Dustin J. Rabideau

November 20, 2023

Cluster Randomized Trial (CRT)

Individually-randomized trial: individuals are randomized

CRT: groups/clusters of people are randomized

Example: The Botswana Combination Prevention Project

30 Villages in 15 Pairs
Digawana
O
Molapowabojang
Otse
Letlhakeng
Lentsweletau
Bokaa
OodiMmathethe
MmankgodiSefhophe
Lerala
Ramokgonami Maunatlala

Mmadinare
Shoshong

Metsimotlhaba Tati Siding

Sebina
Nkange
Mandunyane
Rakops
Gweta
Shakawe
Gumare
Tsetsebjwe
Sefhare

- Nata

Masunga

Large HIV prevention CRT

- 30 communities, 8,551 individuals in HIV-incidence cohort
- Intervention: combination prevention package vs. standard-care
- Outcome: HIV infection, annual study visits (interval-censored)

Reasons to Conduct a CRT

1. Intervention is more naturally/feasibly applied at cluster level
2. Avoid treatment contamination
3. Capture population-level (indirect) effects of intervention

Statistical Analysis of a CRT

Statistical challenges in CRTs

- individual-level outcomes within a cluster are correlated
- small sample setting (only 30 clusters, 15/group)
- design features
(pair-matched randomization)

Typical regression approaches for CRTs:

- mixed effects model (random effects/maximum likelihood)
- marginal model via GEE (generalized estimating equation)

Distributional assumptions not met or a small \# of clusters

- inaccurate p-values and confidence intervals
- \Longrightarrow Wrong conclusions could be drawn from the study!

Randomization-Based Inference

(A.k.a. permutation methods, re-randomization tests)

Recent resurgence of interest in randomization-based inference for CRTs
Advantages:

- Distribution-free (outcome, correlation)
- Exact (small \# clusters)

Challenges

- Less common, less familiar
- More computational time required
- Focus on tests/p-values; confidence interval methods are limited

Example: The Botswana Combination Prevention Project

30 Villages in 15 Pairs

"The unadjusted HIV incidence ratio in the intervention group as compared with the standard-care group was $0.69(\mathrm{p}=0.09)$ by [randomization] test (95\% confidence interval [CI], 0.46 to 0.90 by pair-stratified Cox model)."

Learning Objectives

1. Learn how to conduct a randomization test
2. Learn how to calculate a randomization-based confidence interval
3. Reinforce concepts by applying these methods to the Botswana Combination Prevention Project

Setting and Notation

Parallel CRT with 2 treatment groups

- \# of individuals per cluster can vary
- $Y_{k i}$ is outcome for the i th individual, k th cluster
- $X_{k}=1$ (intervention group)
- $X_{k}=0$ (control group)

Randomization Test

Quantity of interest: marginal effect of treatment (X) on outcome (Y)

$$
\theta=g\left\{E\left(Y_{k i} \mid X_{k}=1\right)\right\}-g\left\{E\left(Y_{k i} \mid X_{k}=0\right)\right\}
$$

- continuous Y (ignore g), θ represents difference in means
- binary Y and "logit" g, θ represents (\log) odds ratio

To conduct a randomization test of no treatment effect ($H_{0}: \theta=0$):

1. Fit regression model with observed data, get observed $\widehat{\theta}$
2. Shuffle treatment assignments, re-fit model, get $\widehat{\theta}^{(2)}$; Ditto $\widehat{\theta}^{(3)}$;
3. Calculate \% of permuted estimates "as or more extreme" than $\widehat{\theta}$

Randomization Test

1. Fit regression model with observed treatment vector $\boldsymbol{x}=\left(x_{1}, \ldots, x_{K}\right)$ to get $\widehat{\theta}^{(1)}=\widehat{\theta}$

$$
g\left\{E\left(Y_{k i} \mid X_{k}\right)\right\}=\mu+\theta x_{k}
$$

> fit <- glm(y ~ x, data = ds)
> coef(fit)["x"] \# thetaHat
** Note, we are fitting a model (GLM) typically used in the independent data (i.e., non-clustered) setting

Randomization Test

2. Shuffle treatment assignments and re-fit model with permuted treatment vector $\boldsymbol{X}^{(p)}$ to get $\widehat{\theta}^{(p)}$ (and repeat this step for $p=2, \ldots, P$)

$$
g\left\{E\left(Y_{k i} \mid X_{k}\right)\right\}=\mu+\theta X_{k}^{(p)}
$$

> for (p in 2:P) \{
> ds\$xp <- permute(ds\$x) \# special function
> fit <- glm(y ~ xp, data = ds)
> coef(fit)["xp"]\} \# thetaHat_p

	Cluster						
$\boldsymbol{X}^{(p)}$	1	2	3	4	5	6	$\widehat{\theta}^{(p)}$
$\boldsymbol{X}^{(1)}=\boldsymbol{x}$	1	1	1	0	0	0	$\widehat{\theta}^{(1)}=\widehat{\theta}$
$\boldsymbol{X}^{(2)}$	1	0	0	1	0	1	$\widehat{\theta}^{(2)}$
$\boldsymbol{X}^{(3)}$	0	1	1	1	0	0	$\widehat{\theta}^{(3)}$
\vdots							
$\boldsymbol{X}^{(P)}$	0	0	1	0	1	1	$\widehat{\theta}^{(P)}$

Randomization Test

3. Calculate p -value $=$ proportion of $\left\{\widehat{\theta}^{(1)}, \widehat{\theta}^{(2)}, \ldots, \widehat{\theta}^{(P)}\right\}$ that are "as or more extreme" than (observed) $\widehat{\theta}^{(1)}=\widehat{\theta}$

Randomization-Based Confidence Interval

Need to "invert" randomization test to calculate a confidence interval (CI)

- Conduct many randomization tests to see which θ s are "reasonable"

To calculate a randomization-based confidence interval for θ :

1. Conduct randomization test for a non-zero null value ($H_{0}: \theta=\theta_{0}$)
2. Repeat across many different θ_{0}
3. Collect all θ_{0} not rejected by this test; bounds form Cl

Randomization-Based Confidence Interval

1. Conduct randomization test for a non-zero null value $\left(H_{0}: \theta=\theta_{0}\right)$

Mathematically equivalent to $H_{0}: \tau=\left(\theta-\theta_{0}\right)=0$ (zero null)

$$
g\left\{E\left(Y_{k i} \mid X_{k}^{(p)}\right)\right\}=\mu+\theta_{0} x_{k}+\tau X_{k}^{(p)}
$$

- Permuted treatment $\boldsymbol{X}^{(p)}$ for offset-adjusted term $\tau X_{k}^{(p)}$
- Observed treatment \boldsymbol{x} for offset $\theta_{0} x_{k}$ (fixed across all permutations)
> fit <- glm(y ~offset (theta0 * x) + xp, data = ds)
> coef(fit)["xp"] \# tauHat_p
** Note, this boils down to conducting a randomization test the same way as before, but now with a fixed offset term in your model

Randomization-Based Confidence Interval

2. Repeat across many different θ_{0}
3. Collect all θ_{0} not rejected by this test; bounds form Cl

Fast Cl Computation

$$
\begin{aligned}
\text { Grid } / \text { binary search } & =(P \text { perms }) \times\left(\text { many } \theta_{0}\right) & & \approx \text { hours to days } \\
\text { Efficient search } & =(P \text { perms }) & & \approx \text { seconds to minutes }
\end{aligned}
$$

[^0]
Accounting for Study Design Features

E.g. stratified, pair-matched, restricted randomization

Typical solution: include additional term(s) in model

- can change value/interpretation of the targeted parameter
- can exacerbate GEE small-sample bias (or result in overcorrection)

Accounting for Study Design Features

E.g. stratified, pair-matched, restricted randomization

Typical solution: include additional term(s) in model

- can change value/interpretation of the targeted parameter
- can exacerbate GEE small-sample bias (or result in overcorrection)

Randomization-based solution: restrict $\boldsymbol{X}^{(p)}$ based on design

- E.g. BCPP: 30 communities, pair-matched randomization \Longrightarrow sample $\boldsymbol{X}^{(p)}$ from among $2^{15} \approx 33 \mathrm{~K}$ (not $\frac{30!}{15!15!} \approx 155 \mathrm{M}$)
- maintain target of inference and parsimonious nonstratified model

R Package on Github: permuter

My R package makes this all very easy to implement!
> devtools::install_github("djrabideau/permuter")
> fit <- glm(y ~ x, data = ds)
> permtest(fit, data = ds, ...)
> permci(fit, data = ds, ...)
> ?permtest
> ?permci

R package link: https://github.com/djrabideau/permuter

Example: The Botswana Combination Prevention Project

30 Villages in 15 Pairs

Ranaka
Molapowabojang
Otse
Letlhakeng
Lentsweletau
Bokaa
Mmathethe
MmankgodiSefhophe
Lerala
Ramokgonami
Maunatlala
Mmadinare
Shoshong

Metsimotlhaba
Tati Siding
Sebina
Nkange
Mandunyane Mathangwane
Rakops
Shakawe

- Gumare

Tsetsebjiwe
Nata
Masunga

Makhema et al. (2019). Universal Testing, Expanded Treatment, and Incidence of HIV Infection in Botswana. NEJM.
"The unadjusted HIV incidence ratio in the intervention group as compared with the standard-care group was $0.69(\mathrm{p}=0.09)$ by [randomization] test (95\% confidence interval [CI], 0.46 to 0.90 by pair-stratified Cox model)."

BCPP Data

Primary outcome: HIV infection measured at annual study visits

- interval-censored time-to-event outcome

pid	community	pair	trt	hiv	left	right
$01-001$	1	1	Intervention	0	754	lnf
$01-002$	1	1	Intervention	1	681	765
$01-003$	1	1	Intervention	0	404	lnf
$02-001$	2	1	Standard	0	702	Inf
$02-002$	2	1	Standard	1	404	668
$03-001$	3	2	Intervention	0	354	Inf
\vdots	\vdots	\vdots	\vdots	\vdots	\vdots	
$30-282$	30	15	Intervention	0	689	lnf

BCPP randomization test

> fit <- survreg(Surv(left, right, type = "interval2") ~ trt)
> test <- permtest(fit, trtname = "trt", runit = "community", strat = "pair", nperm = 5000)
> plot(ptest)

$$
\begin{aligned}
& \widehat{\theta}=-0.37 \\
& \text { Hazard Ratio }=0.69
\end{aligned}
$$

Randomization $\mathrm{p}=0.09$
通 2 minutes on laptop

BCPP randomization-based confidence interval

```
> pci <- permci(fit, trtname = "trt", runit = "community",
    strat = "pair", nperm = 20000)
> plot(pci)
```


Randomization-based $95 \% \mathrm{Cl}: 0.37$ to 1.04

杽筬 40 minutes on laptop

Example: The Botswana Combination Prevention Project

30 Villages in 15 Pairs

"The unadjusted HIV incidence ratio in the intervention group as compared with the standard-care group was $0.69(\mathrm{p}=0.09)$ by [randomization] test (95% confidence interval [CI], 0.46 to 0.90 by pair-stratified Cox model)."

Now, we get $0.69(p=0.09)$ with $95 \% \mathrm{Cl}, 0.37$ to $1.04 \checkmark$

Summary

Randomization-based inference is a robust analysis strategy for CRTs

- Distribution-free (outcome, correlation)
- Exact (small \# clusters)

To conduct a randomization test of no treatment effect ($H_{0}: \theta=0$):

1. Fit regression model with observed data, get observed $\widehat{\theta}$
2. Shuffle treatment assignments, re-fit model, get $\widehat{\theta}^{(2)}$; Ditto $\widehat{\theta}^{(3)}$;
3. Calculate $\%$ of permuted estimates "as or more extreme" than $\widehat{\theta}$

To calculate a randomization-based confidence interval for θ :

1. Conduct randomization test for non-zero null $\left(H_{0}: \theta=\theta_{0}\right)$ via offset
2. Repeat across many different θ_{0}
3. Collect all θ_{0} not rejected by this test; bounds form Cl

To Dive Deeper...

Recommended papers

- Rabideau and Wang (2021). Randomization-based confidence intervals for cluster randomized trials. Biostatistics.
- Rabideau and Wang (2021). Randomization-based inference for a marginal treatment effect in stepped wedge cluster randomized trials. Stat. Med.
- Ernst (2004). Permutation Methods: A Basis for Exact Inference. Stat. Sci.

Try out my R package

- https://github.com/djrabideau/permuter

Thanks!

The Botswana Combination Prevention Project

Method	HR	$95 \% \mathrm{Cl}$	p-value
Randomization, Marginal	0.640	$[0.374,1.039]$	0.064
Randomization, Pair-Stratified	0.646	$[0.369,1.054]$	0.068
Weibull, Frailty-Cluster	0.640	$[0.432,0.947]$	0.025
Weibull, Frailty-Pair	0.641	$[0.453,0.905]$	0.012
Weibull, Pair-Stratified	0.646	$[0.457,0.913]$	0.013

The Botswana Combination Prevention Project

Monitoring 4 separate chains using different starting values

The Botswana Combination Prevention Project

Search procedure adapted from Garthwaite (1996)

The Botswana Combination Prevention Project

Search procedure adapted from Garthwaite and Jones (2009)

R package

```
> m1 <- glm(bpepisodes ~ spnvac, family = poisson, data = pneumovac)
> ci <- permci(m1, trtname = "spnvac",
    runit = "randunit", data = pneumovac,
    nperm = 1000, ncores = 2, seed = 445, level = 0.95)
> print(ci$ci)
    lower upper
-0.97314014 0.06265964
> plot(ci)
```


Randomization-Based CI for SWT

Our method provides a compromise between existing approaches:

GLMM/GEE	gain robustness/ exactness		lose robustness	Rand.-based
	\longrightarrow	Our method	\longleftarrow	cluster-level
	lose precision		gain precision	summaries

Randomization-Based CI for SWTs

Population model

$$
\begin{array}{ll}
\left(\boldsymbol{Y}_{i} \mid \boldsymbol{X}_{i}=\boldsymbol{x}_{*}\right) \sim F\left(\boldsymbol{\eta}_{\boldsymbol{x}_{*}}, \phi\right), & \boldsymbol{\eta}_{\boldsymbol{x}_{*}}=\left(\eta_{1 x_{1}}, \ldots, \eta_{J x_{J}}\right)^{T} \\
& \eta_{j x}=g\left\{E\left(Y_{i j k} \mid X_{i j}=x\right)\right\}=\mu+\beta_{j}+\theta x
\end{array}
$$

- constant treatment effect (θ) across clusters and time
- common average secular trend across clusters (i.e. same β_{j} for all i)
- correlation not impacted by treatment, but otherwise unspecified

Comply:

- Exchangeable correlation structure (Hussey and Hughes, 2007)
- Nested exchangeable (Hooper et al, 2015; Hemming et al, 2017)
- Exponential decay (Kasza et al, 2019)

Do not comply:

- Treatment heterogeneous correlation structure (Hughes et al, 2015)
- Treatment effect heterogeneity (models C-E in Hemming et al, 2017)

Simulations: Different Target Parameters

Marginal model: cluster-average treatment effect

- $\theta=g\left\{E\left(Y_{k i} \mid X_{k}=1\right)\right\}-g\left\{E\left(Y_{k i} \mid X_{k}=0\right)\right\}$

Mixed model: cluster-specific treatment effect

- $\theta^{*}=g\left\{E\left(Y_{k i} \mid X_{k}=1, \gamma_{k}\right)\right\}-g\left\{E\left(Y_{k i} \mid X_{k}=0, \gamma_{k}\right)\right\}$
- relation to marginal θ : integrate over random effects

Cluster-Level Analysis:

- (weighted) average of cluster(-period) summaries
- relation to marginal θ can be complex
- contrast function (e.g. nonlinear)
- weights
- cluster-period sizes
- heuristic adjustments

Simulations: SWT with a Binary Outcome

$$
\theta^{*}=0
$$

$\theta^{*}=0.25$
$\theta^{*}=0.5$

Range of cluster-period sizes ($m_{i j}$), min to max

Simulations: SWT with a Binary Outcome

$$
\sigma=0.1, v=0.01
$$

$$
\sigma=0.1, v=0.1
$$

$\sigma=0.5, v=0.01$

$$
\sigma=0.5, v=0.1
$$

Range of cluster-period sizes $\left(m_{i}\right), \min$ to \max

[^1]
Simulations: Accounting for Study Design Features

Simulations: Stratified SWT with a Binary Outcome

- single binary stratification factor Z
- larger $\gamma^{*} \Longrightarrow$ larger $Y-Z$ association
- both nonstratified (-ns) and stratified analysis

Method	γ^{*}	Cl coverage (\%)			Average Cl width N		
		6	10	14	6	10	14
Randomization	0	94	95	96	1.67	0.72	0.50
	1.5	95	95	96	1.46	0.61	0.43
	1.5-ns	100	100	100	4.73	2.10	1.58
GLMM-C	0	94	93	95	1.12	0.65	0.47
	1.5	95	95	94	1.08	0.63	0.45
	1.5-ns	96	95	95	1.29	0.77	0.56
GEE-FGd5	0	98	94	95	2.11	0.77	0.51
	1.5	98	95	95	2.13	0.74	0.49
	1.5-ns	96	95	96	1.49	0.76	0.52

Simulated vs. Actual logOR in XpertMTB/RIF SWT

The XpertMTB/RIF Trial

SWT assessing 2 diagnostic tests of tuberculosis (TB)

- XpertMTB/RIF rapid test $(X=1)$ vs. smear microscopy $(X=0)$
- 14 laboratories, 8 periods, 3,926 individuals diagnosed with TB
- composite binary outcome (death, dropout, drug failure/resistance)

The XpertMTB/RIF Trial

Analysis type	Method	OR	$95 \% \mathrm{CI}$	p-value
Individual-level	Randomization	0.84	$[0.64,1.07]$	0.13
	GLMM-C	0.84	$[0.68,1.03]$	0.09
	GEE-FGd5	0.83	$[0.57,1.21]$	0.31
Cluster-period	NPWP	0.78	$[0.61,0.97]$	0.02
	Crossover	0.72	$[0.52,1.01]$	0.05
	CF-Perm	0.78	$[0.61,1.01]$	0.06

[^0]: ${ }^{1}$ Adapted from: (1) Garthwaite (1996). Confidence intervals from randomization tests. Biometrics. (2) Garthwaite and Jones (2009). A Stochastic Approximation Method and Its Application to Confidence Intervals. J. Comput. Graph. Stat.

[^1]: \qquad \square CF Perm

