Randomization-Based Inference for Cluster Randomized Trials

Dustin J. Rabideau

November 20, 2023

Cluster Randomized Trial (CRT)

Individually-randomized trial: individuals are randomized

CRT: groups/clusters of people are randomized

Makhema et al (2019). Universal Testing, Expanded Treatment, and Incidence of HIV Infection in Botswana. NE.IM.

Large HIV prevention CRT

- 30 communities, 8,551 individuals in HIV-incidence cohort
- Intervention: combination prevention package vs. standard-care
- Outcome: HIV infection, annual study visits (interval-censored)

Introduction

- 1. Intervention is more naturally/feasibly applied at cluster level
- 2. Avoid treatment contamination
- 3. Capture population-level (indirect) effects of intervention

Statistical Analysis of a CRT

Statistical challenges in CRTs

- individual-level outcomes within a cluster are correlated
- small sample setting (only 30 cl
 - design features

(only 30 clusters, 15/group) (pair-matched randomization)

Typical regression approaches for CRTs:

- mixed effects model (random effects/maximum likelihood)
- marginal model via GEE (generalized estimating equation)

Distributional assumptions not met or a small # of clusters

- inaccurate p-values and confidence intervals
- \implies Wrong conclusions could be drawn from the study!

(A.k.a. permutation methods, re-randomization tests)

Recent resurgence of interest in randomization-based inference for CRTs

Advantages:

- Distribution-free (outcome, correlation)
- Exact (small # clusters)

Challenges

- Less common, less familiar
- More computational time required
- Focus on tests/p-values; confidence interval methods are limited

Makhema et al. (2019). Universal Testing, Expanded Treatment, and Incidence of HIV Infection in Botswana. *NEJM*.

"The unadjusted HIV incidence ratio in the intervention group as compared with the standard-care group was 0.69 (**p=0.09**) by [randomization] test (95% confidence interval [CI], **0.46 to 0.90** by pair-stratified Cox model)."

- 1. Learn how to conduct a randomization test
- 2. Learn how to calculate a randomization-based confidence interval
- 3. Reinforce concepts by applying these methods to the Botswana Combination Prevention Project

Parallel CRT with 2 treatment groups

- # of individuals per cluster can vary
- Y_{ki} is outcome for the *i*th individual, *k*th cluster
- $X_k = 1$ (intervention group)
- $X_k = 0$ (control group)

Quantity of interest: marginal effect of treatment (X) on outcome (Y)

$$\theta = g\{E(Y_{ki}|X_k = 1)\} - g\{E(Y_{ki}|X_k = 0)\}$$

continuous Y (ignore g), θ represents difference in means
binary Y and "logit" g, θ represents (log) odds ratio

To conduct a randomization test of no treatment effect $(H_0 : \theta = 0)$:

- 1. Fit regression model with **observed** data, get observed $\hat{\theta}$
- 2. Shuffle treatment assignments, re-fit model, get $\hat{\theta}^{(2)}$; Ditto $\hat{\theta}^{(3)}$; ...
- 3. Calculate % of permuted estimates "as or more extreme" than $\widehat{ heta}$

1. Fit regression model with observed treatment vector $\mathbf{x} = (x_1, \dots, x_K)$ to get $\hat{\theta}^{(1)} = \hat{\theta}$

$$g\{E(Y_{ki}|X_k)\} = \mu + \theta x_k$$

- > fit <- glm(y ~ x, data = ds)</pre>
- > coef(fit)["x"] # thetaHat

****** Note, we are fitting a model (GLM) typically used in the **independent data** (i.e., non-clustered) setting

2. Shuffle treatment assignments and re-fit model with **permuted** treatment vector $\mathbf{X}^{(p)}$ to get $\hat{\theta}^{(p)}$ (and repeat this step for p = 2, ..., P)

$$g\{E(Y_{ki}|X_k)\} = \mu + \theta X_k^{(p)}$$

> for (p in 2:P) {

- > ds\$xp <- permute(ds\$x) # special function</pre>
- > fit <- glm(y ~ xp, data = ds)</pre>
- > coef(fit)["xp"]} # thetaHat_p

3. Calculate p-value = proportion of $\{\widehat{\theta}^{(1)}, \widehat{\theta}^{(2)}, \dots, \widehat{\theta}^{(P)}\}$ that are "as or more extreme" than (observed) $\widehat{\theta}^{(1)} = \widehat{\theta}$

Need to "invert" randomization test to calculate a confidence interval (CI) • Conduct many randomization tests to see which θ s are "reasonable"

To calculate a randomization-based confidence interval for θ :

- 1. Conduct randomization test for a non-zero null value ($H_0: \theta = \theta_0$)
- 2. Repeat across many different θ_0
- 3. Collect all θ_0 not rejected by this test; bounds form CI

Randomization-Based Confidence Interval

1. Conduct randomization test for a non-zero null value ($H_0: \theta = \theta_0$)

Mathematically equivalent to $H_0: \tau = (\theta - \theta_0) = 0$ (zero null)

$$g\{E(Y_{ki}|X_{k}^{(p)})\} = \mu + \theta_{0}x_{k} + \tau X_{k}^{(p)}$$

• **Permuted** treatment $\boldsymbol{X}^{(p)}$ for offset-adjusted term $\tau X_k^{(p)}$

- **Observed** treatment **x** for offset $\theta_0 x_k$ (fixed across all permutations)
- > fit <- glm(y ~offset(theta0 * x) + xp, data = ds)</pre>
- > coef(fit)["xp"] # tauHat_p

****** Note, this boils down to conducting a randomization test the same way as before, **but now with a fixed offset term in your model**

Randomization-Based Confidence Interval

- 2. Repeat across many different θ_0
- 3. Collect all θ_0 not rejected by this test; bounds form CI

Fast CI Computation

Grid/binary search = $(P \text{ perms}) \times (\text{many } \theta_0) \approx \text{hours to days}$ Efficient search¹ = $(P \text{ perms}) \approx \text{ seconds to minutes}$

¹Adapted from: (1) Garthwaite (1996). Confidence intervals from randomization tests. *Biometrics.* (2) Garthwaite and Jones (2009). A Stochastic Approximation Method and Its Application to Confidence Intervals. *J. Comput. Graph. Stat.*

		Confidence Interval			drabideau@mgh.harvard.edu	17 /	/ 27
--	--	---------------------	--	--	---------------------------	------	------

Accounting for Study Design Features

E.g. stratified, pair-matched, restricted randomization

Typical solution: include additional term(s) in model

- can change value/interpretation of the targeted parameter
- can exacerbate GEE small-sample bias (or result in overcorrection)

Accounting for Study Design Features

E.g. stratified, pair-matched, restricted randomization

Typical solution: include additional term(s) in model

- can change value/interpretation of the targeted parameter
- can exacerbate GEE small-sample bias (or result in overcorrection)

Randomization-based solution: restrict $X^{(p)}$ based on design

- E.g. BCPP: 30 communities, pair-matched randomization \implies sample $\boldsymbol{X}^{(p)}$ from among $2^{15} \approx 33$ K (not $\frac{30!}{15!15!} \approx 155$ M)
- maintain target of inference and parsimonious nonstratified model

R Package on Github: permuter

My R package makes this all $\ensuremath{\textit{very easy}}$ to implement!

- > devtools::install_github("djrabideau/permuter")
- > fit <- glm(y ~ x, data = ds)</pre>
- > permtest(fit, data = ds, ...)
- > permci(fit, data = ds, ...)
- > ?permtest
- > ?permci

R package link: https://github.com/djrabideau/permuter

Makhema et al. (2019). Universal Testing, Expanded Treatment, and Incidence of HIV Infection in Botswana. *NEJM*.

"The unadjusted HIV incidence ratio in the intervention group as compared with the standard-care group was 0.69 (**p=0.09**) by [randomization] test (95% confidence interval [CI], **0.46 to 0.90** by pair-stratified Cox model)."

BCPP Data

Primary outcome: HIV infection measured at annual study visits

interval-censored time-to-event outcome

pid	community	pair	trt	hiv	left	right
01-001	1	1	Intervention	0	754	Inf
01-002	1	1	Intervention	1	681	765
01-003	1	1	Intervention	0	404	Inf
02-001	2	1	Standard	0	702	Inf
02-002	2	1	Standard	1	404	668
03-001	3	2	Intervention	0	354	Inf
:	:	÷	:	÷	÷	
30-282	30	15	Intervention	0	689	Inf

BCPP randomization test

- > fit <- survreg(Surv(left, right, type = "interval2") ~ trt)</pre>
- > plot(ptest)

BCPP randomization-based confidence interval

- > plot(pci) 1.2 1.0 0.8 Hazard Ratio Randomization-based 95% CI: 0.37 to 1.04 0.6 40 minutes on laptop 0.4 -× initial CI search o final CI estimates 0 5000 10000 15000 20000

Number of Permutations

	Introduction	Test	Confidence Interval	Example	Appendix	drabideau@mgh.harvard.edu	23 / 27
--	--------------	------	---------------------	---------	----------	---------------------------	---------

Makhema et al. (2019). Universal Testing, Expanded Treatment, and Incidence of HIV Infection in Botswana. *NEJM*.

"The unadjusted HIV incidence ratio in the intervention group as compared with the standard-care group was 0.69 (**p=0.09**) by [randomization] test (95% confidence interval [CI], **0.46 to 0.90** by pair-stratified Cox model)."

Now, we get 0.69 (p=0.09) with 95% CI, 0.37 to 1.04 \checkmark

Summary

Randomization-based inference is a robust analysis strategy for CRTs

- Distribution-free (outcome, correlation)
- Exact (small # clusters)

To conduct a randomization **test** of no treatment effect ($H_0: \theta = 0$):

- 1. Fit regression model with observed data, get observed $\widehat{\theta}$
- 2. Shuffle treatment assignments, re-fit model, get $\hat{\theta}^{(2)}$; Ditto $\hat{\theta}^{(3)}$; ...
- 3. Calculate % of permuted estimates "as or more extreme" than $\widehat{\theta}$

To calculate a randomization-based **confidence interval** for θ :

- 1. Conduct randomization test for non-zero null $(H_0: \theta = \theta_0)$ via offset
- 2. Repeat across many different θ_0
- 3. Collect all θ_0 not rejected by this test; bounds form CI

To Dive Deeper...

Recommended papers

- Rabideau and Wang (2021). Randomization-based confidence intervals for cluster randomized trials. *Biostatistics.*
- Rabideau and Wang (2021). Randomization-based inference for a marginal treatment effect in stepped wedge cluster randomized trials. *Stat. Med.*
- Ernst (2004). Permutation Methods: A Basis for Exact Inference. *Stat. Sci.*

Try out my R package

https://github.com/djrabideau/permuter

Thanks!

Method	HR	95% CI	p-value
Randomization, Marginal	0.640	[0.374, 1.039]	0.064
Randomization, Pair-Stratified	0.646	[0.369, 1.054]	0.068
Weibull, Frailty-Cluster	0.640	[0.432, 0.947]	0.025
Weibull, Frailty-Pair	0.641	[0.453, 0.905]	0.012
Weibull, Pair-Stratified	0.646	[0.457, 0.913]	0.013

Monitoring 4 separate chains using different starting values

Search procedure adapted from Garthwaite (1996)

Parallel CRT

tepped Wedge Trial drabideau@mgh.harvard.edu 14 / 26

Search procedure adapted from Garthwaite and Jones (2009)

Parallel CRT

stepped Wedge Trial drabideau@mgh.harvard.edu 15 / 26

R package

Our method provides a compromise between existing approaches:

Randomization-Based CI for SWTs

Population model

$$(\mathbf{Y}_i | \mathbf{X}_i = \mathbf{x}_*) \sim F(\boldsymbol{\eta}_{\mathbf{x}_*}, \boldsymbol{\phi}), \quad \boldsymbol{\eta}_{\mathbf{x}_*} = (\eta_{1 \times 1}, \dots, \eta_{J \times J})^T, \\ \eta_{j \times} = g\{E(\mathbf{Y}_{ijk} | \mathbf{X}_{ij} = \mathbf{x})\} = \mu + \beta_j + \theta_X$$

- constant treatment effect (θ) across clusters and time
- common average secular trend across clusters (i.e. same β_j for all i)
- correlation not impacted by treatment, but otherwise unspecified

Comply:

- Exchangeable correlation structure (Hussey and Hughes, 2007)
- Nested exchangeable (Hooper et al, 2015; Hemming et al, 2017)
- Exponential decay (Kasza et al, 2019)

Do not comply:

- Treatment heterogeneous correlation structure (Hughes et al, 2015)
- Treatment effect heterogeneity (models C-E in Hemming et al, 2017)

Simulations: Different Target Parameters

Marginal model: **cluster-average** treatment effect • $\theta = g\{E(Y_{ki}|X_k = 1)\} - g\{E(Y_{ki}|X_k = 0)\}$

Mixed model: cluster-specific treatment effect

•
$$\theta^* = g\{E(Y_{ki}|X_k = 1, \gamma_k)\} - g\{E(Y_{ki}|X_k = 0, \gamma_k)\}$$

• relation to marginal θ : integrate over random effects

Cluster-Level Analysis:

- (weighted) average of cluster(-period) summaries
- relation to marginal θ can be complex
 - contrast function (e.g. nonlinear)
 - weights
 - cluster-period sizes
 - heuristic adjustments

Simulations: SWT with a Binary Outcome

Simulations: SWT with a Binary Outcome

Simulations: Accounting for Study Design Features

Simulations: Stratified SWT with a Binary Outcome

- single binary stratification factor Z
- larger $\gamma^* \implies$ larger Y-Z association
- both nonstratified (-ns) and stratified analysis

		CI co	overage	e (%)	Avera	age Cl	width	
Method	γ^*	N						
		6	10	14	6	10	14	
	0	94	95	96	1.67	0.72	0.50	
Randomization	1.5	95	95	96	1.46	0.61	0.43	
	1.5-ns	100	100	100	4.73	2.10	1.58	
	0	94	93	95	1.12	0.65	0.47	
GLMM-C	1.5	95	95	94	1.08	0.63	0.45	
	1.5-ns	96	95	95	1.29	0.77	0.56	
	0	98	94	95	2.11	0.77	0.51	
GEE-FGd5	1.5	98	95	95	2.13	0.74	0.49	
	1.5-ns	96	95	96	1.49	0.76	0.52	

Simulated vs. Actual logOR in XpertMTB/RIF SWT

The XpertMTB/RIF Trial

SWT assessing 2 diagnostic tests of tuberculosis (TB)

- XpertMTB/RIF rapid test (X = 1) vs. smear microscopy (X = 0)
- 14 laboratories, 8 periods, 3,926 individuals diagnosed with TB
- composite binary outcome (death, dropout, drug failure/resistance)

Analysis type	Method	OR	95% CI	p-value
	Randomization	0.84	[0.64, 1.07]	0.13
Individual-level	GLMM-C	0.84	[0.68, 1.03]	0.09
	GEE-FGd5	0.83	[0.57, 1.21]	0.31
	NPWP	0.78	[0.61, 0.97]	0.02
Cluster-period	Crossover	0.72	[0.52, 1.01]	0.05
	CF-Perm	0.78	[0.61, 1.01]	0.06