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Multidimensional definition of the interferonopathy of
Down syndrome and its response to JAK inhibition
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Kelly D. Sullivan1,6, Joaquin M. Espinosa1,2*

Individuals with Down syndrome (DS) display chronic hyperactivation of interferon signaling. However, the clin-
ical impacts of interferon hyperactivity in DS are ill-defined. Here, we describe a multiomics investigation of
interferon signaling in hundreds of individuals with DS. Using interferon scores derived from the whole
blood transcriptome, we defined the proteomic, immune, metabolic, and clinical features associated with inter-
feron hyperactivity in DS. Interferon hyperactivity associates with a distinct proinflammatory phenotype and
dysregulation of major growth signaling and morphogenic pathways. Individuals with the highest interferon
activity display the strongest remodeling of the peripheral immune system, including increased cytotoxic T
cells, B cell depletion, and monocyte activation. Interferon hyperactivity accompanies key metabolic changes,
most prominently dysregulated tryptophan catabolism. High interferon signaling stratifies a subpopulation
with elevated rates of congenital heart disease and autoimmunity. Last, a longitudinal case study demonstrated
that JAK inhibition normalizes interferon signatures with therapeutic benefit in DS. Together, these results
justify the testing of immune-modulatory therapies in DS.
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INTRODUCTION
Down syndrome (DS) is caused by triplication of chromosome 21
(chr21), i.e., trisomy 21 (T21), the most common chromosomal ab-
normality in the human population (1). Individuals with DS display
various developmental phenotypes, including delayed growth and a
distinct neurocognitive profile (2). The notable increase in the life
expectancy of individuals with DS in the past five decades has led to
the realization that T21 causes a unique spectrum of co-occurring
conditions across the life span, with decreased prevalence of some
medical conditions and increased prevalence of others relative to
the general population (2). Newborns with DS are at high risk of
congenital heart defects (CHD), Hirschsprung’s disease, and tran-
sient myeloproliferative disorder, and children with DS are predis-
posed to develop leukemia, autism, and seizure disorders (3).
Across the life span, individuals with DS are highly prone to devel-
oping autoimmune disorders, most prominently autoimmune
thyroid disease (AITD), celiac disease, and autoimmune skin con-
ditions (4, 5). The strong immune dysregulation characteristic of DS
also manifests through more severe complications from respiratory
infections, including coronavirus disease 2019 (COVID-19) (5, 6).
Adults with DS display much lower rates of most solid malignancies
as well as hypertension and atherosclerosis (5, 7). Later in life, indi-
viduals with DS are strongly predisposed to develop Alzheimer’s

disease (8). Despite substantial research efforts, with a few notable
exceptions, the mechanisms by which T21 causes the myriad devel-
opmental and clinical hallmarks of DS await elucidation. Therefore,
research in this area would benefit not only people with DS but also
the general population affected by the medical conditions that are
modulated by T21. For example, studies of the amyloid precursor
protein gene (APP) encoded on chr21 have enabled a better under-
standing of the role of APP triplication versus other accompanying
processes in the etiology of Alzheimer’s disease in both the general
population and those with DS (8).

Within this framework, previous analyses of the transcriptome,
proteome, metabolome, and immune cell repertoire of individuals
with DS demonstrated that T21 consistently activates the interferon
(IFN) transcriptional response across multiple cell types (9, 10),
concurrent with changes in the circulating proteome indicative of
chronic autoinflammation (11), global immune remodeling associ-
ated with hypersensitivity to type I IFN stimulation and elevated
Janus kinase/signal transducer and activator of transcription
(JAK/STAT) signaling (10, 12, 13), and activation of the IFN-induc-
ible kynurenine pathway, leading to production of neurotoxic tryp-
tophan catabolites (14, 15). These findings support the hypothesis
that DS can be understood, in part, as an atypical interferonopathy
associated with triplication of four IFN receptor (IFNR) genes
encoded on chr21 (i.e., IFNAR1, IFNAR2, IFNGR2, and IL10RB)
(10). Despite these advances, the contributions of chronic IFN hy-
peractivity to the myriad developmental and clinical features of DS
remain to be elucidated. Experiments in mouse models of DS dem-
onstrated that normalization of the IFNR gene copy number can
fully or partially rescue several phenotypes in these animals, includ-
ing impaired fetus growth and neuronal viability (16), as well as
lethal antiviral responses, congenital heart malformations, craniofa-
cial anomalies, early developmental delays, and cognitive impair-
ments (17). Although these results support the notion that an
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interferonopathy underlies much of the pathophysiology of DS, the
multiple impacts of IFN hyperactivity on the development, physiol-
ogy, metabolism, clinical risk profiles, and accelerated aging of
persons with DS await elucidation. Furthermore, the molecular
and cellular mechanisms by which dysregulated IFN signaling
may cause these effects are also unknown.

To advance the understanding of the interferonopathy of DS, we
completed an integrated multiomics analysis of IFN signaling in a
large cohort of individuals with T21 compared to euploid controls.
Using IFN scores derived from the whole blood transcriptome, we
defined associations between levels of IFN hyperactivity and the
proteome, immune cell profile, metabolome, and clinical variables.
This effort revealed that the interferonopathy of DS is clearly of a
mixed type, being strongly associated with circulating protein
levels of IFNγ (IFNG, type II IFN) and IFNλ1 (IFNL1, type III
IFN). Furthermore, IFN hyperactivity is associated with a distinct
immune profile in DS marked by elevation of acute phase proteins
and key cytokines strongly tied to the development of autoimmuni-
ty, such as interleukin-6 (IL-6) and tumor necrosis factor–α
(TNFα). IFN hyperactivity accompanies the global proteomic
changes observed in DS, being significantly associated with dysre-
gulation of growth factor signaling and developmental pathways, as
well as complement, coagulation, and fibrinolysis cascades. Individ-
uals with DS with the highest IFN activity have the most marked
shifts in the peripheral immune system, including a reduction in
naïve T cell subsets along with enrichment of cytotoxic T cells, B
cell depletion, and monocyte activation. At the metabolic level,
IFN hyperactivity is associated with dysregulation of tryptophan ca-
tabolism, fatty acid metabolism, and central carbon metabolism.
Furthermore, IFN hyperactivity associates with a specific pattern
of co-occurring conditions in DS, including increased prevalence
of CHD and AITD. Through a longitudinal case study, we demon-
strate that JAK inhibition normalizes IFN signaling in a research
participant with DS in a reversible fashion and without overt
immune suppression. Last, we demonstrate that JAK inhibition at-
tenuates global dysregulation of gene expression and decreases IFN
signatures across multiple organ systems in a mouse model of DS.
Together, these results advance our understanding of hyperactive
IFN signaling in DS while justifying the testing of therapeutic inter-
ventions targeting the IFN pathway to improve health outcomes in
this population.

RESULTS
Hyperactive IFN signaling in DS occurs without overt IFN
overproduction
To investigate the multidimensional impacts of IFN hyperactivity
among individuals with DS, we completed a multiomics analysis
in a research cohort of 502 participants from the Human Trisome
Project (HTP) biobank, 356 with T21 versus 146 euploid controls,
along with deep annotation of demographics and clinical data (fig.
S1A and data S1A; see Materials andMethods). Blood samples were
analyzed by whole blood transcriptome analysis via RNA sequenc-
ing (RNA-seq), plasma proteomics using the SOMAscan platform,
inflammatory marker profiling with multiplexed immunoassays
using Meso Scale Discovery (MSD) technology, plasma metabolo-
mics via mass spectrometry, and immune cell phenotyping via mass
cytometry (fig. S1, A to F, and data S1, B to F; see Materials and

Methods). For a core set of ~400 participants, ~300 of them with
T21, the datasets were generated from the exact same blood draw,
enabling effective cross-platform analyses (fig. S1G).

It is well-documented that IFN signaling is hyperactive in DS,
which could be explained in part by the presence of type I, II, and
III IFNR genes on chr21 (9, 10, 12, 13, 15, 17). In agreement with
previous reports using much smaller cohorts (9, 12, 13, 15), gene set
enrichment analysis (GSEA) of the whole blood transcriptome
dataset identified the IFN gamma response, IFN alpha response,
and inflammatory response hallmark gene sets among the top pos-
itively enriched signatures in DS (Fig. 1A, fig. S2A, and data S2A).
Comparison of up-regulated genes comprising the IFN gamma,
IFN alpha, and inflammatory response GSEA signatures highlights
both common and unique genes (fig. S2B), with 141 known IFN-
stimulated genes (ISGs) across both the IFN alpha and gamma sig-
natures identified as significantly up-regulated in DS (fig. S2B).
Therefore, the IFN signature associated with DS cannot be simply
equated to type I or type II IFN signaling and is likely a mix of both.
Expectedly, all four IFNR genes encoded on chr21 are significantly
overexpressed in T21 (i.e., IFNAR1,IFNAR2, IFNGR2, and IL10RB)
(Fig. 1B, fig. S2C, and data S1B). Of the two IFNRs encoded else-
where in the genome, IFNGR1 was mildly elevated in T21 samples,
whereas IFNLR1 was not (fig. S2C). Key ISGs up-regulated in DS
include some encoded on chr21 (e.g., MX1 and MX2) and many
more encoded elsewhere in the genome (e.g., GZMA, IRF7,
IFITM3, and CXCL10) (Fig. 1B and fig. S2C).

IFN transcriptional scores are commonly used as biomarkers of
disease severity and response to treatment in IFN-driven conditions
such as systemic lupus erythematosus (SLE), type I interferonopa-
thies, and diverse autoinflammatory conditions and are commonly
calculated as the sum of z scores for specific sets of elevated ISGs,
varying in number from 5 to 50+ genes (18, 19). Thus, we calculated
DS IFN scores using ISGs significantly elevated in T21 at least 1.5-
fold and that are not encoded on chr21 (18 genes; fig. S2D and data
S2B). We specifically excluded ISGs encoded on chr21 from this
gene signature, whose elevation is likely because of increased gene
dosage, with the aim of focusing instead on the downstream IFN
transcriptional response. Expectedly, individuals with DS displayed
greatly elevated IFN scores compared to euploid controls, with a
wide range of interindividual variability (Fig. 1C). Notably, IFN
scores did not vary significantly by sex or age (fig. S2, E and F). Cal-
culating the DS IFN scores with larger numbers of ISGs produced
similar results, indicating that the 18 ISG score is adequate to
monitor the range of IFN hyperactivity in DS (fig. S2, G and H).

To gain further insight into the nature of IFN hyperactivity in
DS, we interrogated datasets that our team generated via the COV-
IDome Project using a similar experimental pipeline, including
identical whole blood transcriptome analysis of 73 hospitalized pa-
tients with COVID-19 versus 32 COVID-19–negative controls,
none with DS (20–22). IFN signaling is strongly activated in
COVID-19 as part of the antiviral response to severe acute respira-
tory syndrome coronavirus 2 (SARS-CoV-2), with IFN alpha and
gamma response signatures being the top gene sets enriched in
the whole blood transcriptome of hospitalized patients with
COVID-19 (22). Notably, more than half of the 141 ISGs signifi-
cantly elevated in DS are also significantly elevated in COVID-19
(Fig. 1D). When calculating IFN scores for the COVIDome
Project samples using the exact same set of 18 ISGs, we observed
that these scores were elevated in COVID-19 to a similar extent as
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seen in DS, also with strong interindividual variability (Fig. 1E). For
example, IFI44L andUSP18 are commonly up-regulated in both DS
and COVID-19 (Fig. 1F). Comparative GSEA of the top transcrip-
tional signatures in the two conditions revealed a clear similarity in
affected pathways, with a few notable differences (Fig. 1G). Al-
though both conditions involve elevation of IFN alpha and IFN
gamma responses, IFN alpha is more strongly enriched in

COVID-19. Other differences include a transcriptional signature
of IL-2 STAT5 signaling elevated only in DS and a signature of
heme metabolism being elevated in DS but repressed in COVID-19.

We previously reported significant elevation of plasma protein
levels of six different type I, II, and III IFNs in patients with
COVID-19 (IFNA1, IFNA2, IFNA4/16, IFNA6, IFNG, and
IFNL3/2) and that IFN scores are associated mostly with levels of

Fig. 1. Comparative analysis of the
IFN response in DS versus COVID-
19. (A) Barplot summarizing results
of GSEA of gene expression changes
in whole blood of individuals with
T21 (n = 304) versus euploid controls
(D21; n = 96). Bars are color-coded
by positive (orange) or negative
(purple) normalized enrichment
score (NES) values. (B) Sina plots
displaying mRNA levels for IFNRs
encoded on chr21 (IFNAR2, IFNGR2,
and IL10RB), MX1, an ISG encoded
on chr21, and GMZA and IRF7,
encoded elsewhere in the genome.
(C) Sina plot displaying DS IFN
scores calculated from the expres-
sion of the top 18 ISGs induced in
the whole blood transcriptome of
individuals with T21 (fold change >
1.5, q < 0.1). (D) Volcano plots sum-
marizing whole blood transcrip-
tome analysis of patients
hospitalized with acute COVID-19 (n
= 73) versus COVID-19–negative
controls (n = 32). A total of 141 ISGs
elevated in whole blood transcrip-
tome of individuals with DS are
highlighted in red. (E) Sina plot dis-
playing DS IFN scores for acute
COVID-19 cases versus COVID-19–
negative controls. (F) Sina plots dis-
playing the induction of canonical
ISGs (IFI44L and USP18) in DS and
COVID-19. (G) Heatmap comparing
the GSEA NES for whole blood
transcriptome changes in DS (T21)
versus COVID-19. Color coding indi-
cates transcriptional signatures en-
riched among up-regulated (red) or
down-regulated (blue) genes, as
defined by positive or negative NES
values. (H) Heatmap comparing
plasma protein fold changes for
specific IFNs in individuals with T21
versus euploid controls (left) and
patients with COVID-19 versus
COVID-19–negative controls (right).
(I) Heatmap comparing mRNA fold
changes for individual IFNRs mea-
sured in the whole blood transcrip-
tome of individuals with T21 versus
euploid controls (left) and patients
with COVID-19 versus COVID-19–negative controls (right). Boxes in sina plots represent interquartile ranges and medians, with notches approximating 95% confidence
intervals. See also figs. S1 and S2. RPKM, reads per kilobase per million mapped reads.
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IFNA2 and IFNG in COVID-19 (22). Notably, in DS, we observed
only mild elevation of IFNA7/17/21 and IFNL3/2, along with a mild
decrease in IFNL1 levels (Fig. 1H). Conversely, none of the IFNRs
encoded on chr21 are elevated at the RNA level in patients with
COVID-19, who instead display up-regulation of IFNLR1
(Fig. 1I). Therefore, although IFN signaling is hyperactive in both
DS and COVID-19, with similar activation of IFN transcriptional
signatures, this phenomenon is linked to IFNR overexpression in
DS versus IFN protein induction in COVID-19.

Together, these results indicate that T21 causes IFN hyperactiv-
ity even in the absence of obvious viral infection and without
massive elevation of IFNs, leading rather to a mixed-type interfer-
onopathy associated with IFNR overexpression. Furthermore, the
DS IFN score provides a tool to define associations between hyper-
active IFN signaling, other physiological processes dysregulated in
DS, co-occurring conditions, and responses to therapeutic
interventions.

IFN hyperactivity uncovers a distinct proinflammatory
subtype in DS
Next, we defined correlations betweenDS IFN scores and 54 inflam-
matory markers measured by multiplexed immunoassays using the
MSD platform, allowing us to examine changes in various cyto-
kines, chemokines, and immune factors with respect to T21 status
and correlation with DS IFN scores (Fig. 2, A and B; fig. S3, A and B;
and data S3). Among the four IFNs measured on this platform,
IFNG (type II) and IFNL1 (type III) displayed significant positive
correlations with DS IFN scores, but this was not the case for the
type I IFNs, IFNA2 and IFNB1 (Fig. 2, A to D, and fig. S3C).
Thus, although the whole blood transcriptome analysis reveals
up-regulation of the two type I IFNRs encoded on chr21
(IFNAR1, IFNAR2; Fig. 1B and fig. S2C) and despite the well-dem-
onstrated hypersensitivity of immune and nonimmune cells from
individuals with DS to type I IFN stimulation (9, 10, 12, 13, 15),
the DS IFN transcriptional response in the peripheral immune
compartment is more strongly associated with the levels of type II
and type III IFNs. The overall pattern of correlations is reproduced
when using the DS IFN scores composed of 52 and 138 ISGs, with
IFNG and IFNL1 consistently ranking at the top of the correlations
(fig. S3, A and B). Notably, neither IFNG nor IFNL1 are signifi-
cantly elevated in the bloodstream of people with DS (Figs. 1H
and 2D, fig. S3C, and data S1D). To investigate this phenomenon
further, we compared correlations between the DS IFN scores
versus validated IFN measurements obtained using the MSD and
SOMAscan platforms in DS versus COVID-19 (Fig. 2C) (22).
This exercise revealed that, whereas the DS IFN score tracks prefer-
entially with IFNG and IFNL1 in DS, this same ISG signature cor-
relates significantly with eight different IFNs in COVID-19, five of
which are type I IFNs (i.e., IFNA2, IFNA7/17/21, IFNA1, IFNA4/
16, and IFNA10) (Fig. 2C). When analyzing the global transcrip-
tome signatures associated with the variable expression of all 6
IFNRs and the 11 IFNs, once again, IFNG and IFNL1 stood out
as having the strongest associations with IFN gamma and alpha sig-
natures (fig. S3, D and E). While expression of all four IFNRs
encoded on chr21 also associated with IFN signatures and other in-
flammatory pathways, the associations were weaker relative to the
IFN proteins (fig. S3, D and E). Notably, of the two IFNRs
encoded elsewhere in the genome (IFNGR1 and IL-10RA), IL-
10RA showed the opposite behavior, which could be explained by

the fact that it also functions as a receptor subunit for IL-10, a cy-
tokine with anti-inflammatory properties known to antagonize IFN
signaling in some settings (23). Thus, unlike viral infections involv-
ing elevation of multiple IFNs andmonogenic type I interferonopa-
thies associated mostly with overproduction of type I IFNs (18, 24),
the interferonopathy of DS is more likely associated, at least in the
context of the peripheral immune system, with the levels of type II
and type III IFNs and driven not by elevated levels of these cyto-
kines but rather by increased expression of their receptors. Overex-
pression of IFNRs on the surface of immune cells with T21 has been
well documented (10, 13).

As expected, the transcriptional DS IFN scores correlated signif-
icantly with plasma levels of IP10 (IFN-inducible protein 10;
CXCL10), a protein encoded by one of the ISGs in the DS IFN
score (Fig. 2, A, B, and D). The third strongest correlation in this
analysis was to TNFα, a potent inflammatory cytokine that has
been consistently observed to be elevated in DS (Fig. 2, A, B, and
D) (11, 25). Elevated TNFα has been implicated in the etiology of
several autoimmune and neurological conditions more common in
DS (26), and its association with DS IFN scores suggests that its el-
evation in DS could be understood as part of the interferonopathy.
Also strongly correlated with the DS IFN scores is IL-6, another key
proinflammatory cytokine consistently elevated in DS (Fig. 2, A, B,
and D) (11, 25). IL-6 is a potent driver of liver inflammation, induc-
ing production of acute phase proteins such as C-reactive protein
(CRP) and serum amyloid A protein (SAA) (27), which are also el-
evated in DS and positively correlated with DS IFN scores (Fig. 2, A,
B, and D, and fig. S3C). Notably, many important cytokines elevat-
ed in those with T21 do not show significant correlations with the
DS IFN scores. An example is thymic stromal lymphopoietin
(TSLP), a factor that promotes T helper cell (TH2) responses asso-
ciated with various inflammatory diseases, including allergic in-
flammation, asthma, and chronic obstructive pulmonary disease
(Fig. 2, A, B, and D) (28). These results indicate that some, but
not all, immune dysregulation observed in DS is associated with
the degree of IFN hyperactivity. To investigate this phenomenon
further through an orthogonal approach, we performed consensus
clustering of all participants with DS based on their inflammatory
markers to identify potential subtypes, revealing five major immune
profiles in our DS cohort, with cluster 1 showing significantly ele-
vated IFN scores relative to all other clusters (Fig. 2, E and F; see
Materials and Methods). In agreement with the Spearman correla-
tion analysis, cluster 1 displays significantly elevated levels of IFNG
andmultiple components of the IL-6–CRP–SAA pathway, as well as
higher levels of macrophage inflammatory protein 1α (MIP1α) and
MIP3α (Fig. 2F and fig. S3F). In contrast, clusters 4 and 5, with gen-
erally lower IFN scores, display higher levels of TSLP and/or vascu-
lar endothelial growth factor C (VEGFC) (Fig. 2, E and F). Thus,
IFN hyperactivity is clearly associated with a distinct proinflamma-
tory subtype of DS. Overall, these results further reinforce the
notion of a mixed-type interferonopathy in DS, with key contribu-
tions of type II and type III IFN signaling, while also demonstrating
that IFN hyperactivity is linked to induction of specific major in-
flammatory pathways dysregulated in DS, such as TNFα and IL-6
signaling.
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IFN hyperactivity accompanies global proteomic changes
in DS
Next, we investigated the relationship between DS IFN scores and
the plasma proteomic changes identified by SOMAscan technology
in those with T21. As for the transcriptome analysis, GSEA revealed
proteomic signatures indicative of activation of IFN gamma and
IFN alpha responses in DS (Fig. 3A and data S4A). Whereas
many of the gene sets identified by the proteomics analysis as dys-
regulated in DS were similar to those identified in the transcriptome

analysis (e.g., IFN responses, heme metabolism, and estrogen re-
sponse) (Fig. 1A), others were not (e.g., down-regulation of the co-
agulation cascade in the proteomics dataset), thus highlighting the
value of proteomics analyses as a complement to transcriptome
analyses. Next, to define associations between the strength of IFN
hyperactivation and specific proteomic changes, we calculated
Spearman correlation scores for all plasma proteins measured
versus the DS IFN scores calculated from the whole blood transcrip-
tome analysis (Fig. 3B and data S4B). The whole blood

Fig. 2. IFN hyperactivity associates
with a distinct proinflammatory
immune profile in DS. (A) Volcano
plot displaying Spearman correlation
scores (rho) between transcriptional
DS IFN scores and 54 inflammatory
markers measured by MSD assays in
plasma from 249 individuals with T21.
Significance is defined as q < 0.1 [10%
false discovery rate (FDR)]. (B) Scatter-
plot comparing the effects of T21 on
the levels of 54 inflammatory markers
(y axis) with their correlation to DS IFN
scores (x axis). Color intensity of points
increases with absolute rho value; the
blue line represents a linear fit, with
95% confidence interval in gray. (C)
Heatmap displaying Spearman corre-
lation rho values for DS IFN scores
versus plasma protein levels of 12 IFNs
measured by MSD or SOMAscan
assays in individuals with DS (n = 249)
or euploid patients hospitalized with
acute COVID-19 (n = 71). Asterisks in-
dicate q < 0.1. (D) Sina plots (left) dis-
playing the effects of T21 on levels of
inflammatorymarkers and scatterplots
(right) displaying relationships to DS
IFN scores among thosewith T21 (with
Spearman correlation rho and q
values). Points are colored by density;
blue lines represent linear fit, with 95%
confidence intervals in gray. Signifi-
cance is defined as q < 0.1 (10% FDR).
(E) Heatmap displaying median z
scores for inflammatory markers in
each of the five consensus clusters for
249 individuals with T21. Rows are or-
ganized by hierarchical clustering and
split into seven subgroups for clarity.
(F) Sina plots displaying distributions
of DS IFN scores and indicated infl-
ammatory markers across the five
immune subtypes identified in (E).
Asterisks indicate q < 0.1 (10% FDR) for
Mann-Whitney tests for each cluster
against cluster 1. Boxes in sina plots
represent interquartile ranges and
medians, with notches approximating
95% confidence intervals. See also fig.
S3. n.s., not significant.
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Fig. 3. IFN hyperactivity correlates with global proteomics changes in DS. (A) Barplot of the top 25 Hallmark gene sets sorted by absolute NES from GSEA of protein
changes in the plasma of individuals with T21 (n = 316) versus euploid controls (n = 103). Bar color represents NES values; bar length represents −log10(q value). (B).
Volcano plot displaying the correlations between the transcriptional DS IFN score and all proteins measured in plasma samples with the SOMAscan platform. (C) Scat-
terplot comparing GSEANES values for protein signatures dysregulated in the proteome of individuals with T21 relative to euploid controls (y axis) versus those associated
with the transcriptional DS IFN score (x axis). Points are colored according to significant enrichment in either (orange) or both (red) analyses. (D) Scatterplot comparing the
effects of T21 on plasma protein levels (y axis) versus their correlation to transcriptional DS IFN scores in 304 individuals with T21 (x axis). Color intensity of points increases
with absolute rho value. The blue line represents a linear fit through the data, with 95% confidence interval in gray, with Spearman rho and P value for the relationship in
the top right. (E and F) Sina plots (left) displaying the effects of T21 on levels of plasma proteins and scatterplots (right) displaying their relationship with transcriptional
DS IFN scores among those with T21 (with rho and q values for Spearman correlation). Points are colored by density; blue lines represent linear model fit, with 95%
confidence intervals in gray. Significance is defined as q < 0.1 (10% FDR). Boxes in sina plots represent interquartile ranges andmedians, with notches approximating 95%
confidence intervals. See also fig. S4.
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transcriptome–based DS IFN score showed positive correlations
with plasma proteins encoded by ISGs (e.g., MX1, CXCL11,
CXCL10, ISG15, and STAT1) (Fig. 3B). Again, the overall pattern
of correlations was preserved when using DS IFN scores with
greater numbers of ISGs (fig. S4, A and B). Comparison of GSEA
results revealed that many, but not all, of the same pathways affected
by T21 are significantly enriched among the positive (e.g., IFN
gamma and alpha responses) and negative (e.g., angiogenesis and
coagulation) correlations with the DS IFN scores (Fig. 3C and
data S4C).

To further examine the global relationship between the impacts
of T21 status versus varying IFN signaling, we compared the fold
change in T21/euploid control samples versus the correlation to
the RNA-based DS IFN score for all proteins, which demonstrated
a significant positive correlation between the two values (Spearman
rho 0.2, P = 5.78 × 10−43; Fig. 3D). Thus, the degree of IFN hyper-
activity observed in the transcriptome of individuals with DS corre-
lates with the extent of proteomic changes in their peripheral blood.
This exercise revealed different sets of proteins based on their con-
cordant or discordant behavior in relation to T21 status versus IFN
signaling (Fig. 3, D and E). A subset of proteins is elevated in T21
but do not show significant associations with IFN scores. This
group contains many proteins encoded on chr21 whose elevation
could be explained by mere increased gene dosage without
obvious links to IFN signaling, such as the transcription factor
TFF1 and the collagen family member COL18A1 (fig. S4C).
However, this group also contains proteins encoded elsewhere in
the genome whose elevation would likely be due to IFN-indepen-
dent downstream effects of T21, such as MMP1 (matrix metallopro-
teinase 1) (fig. S4C). Another set of proteins are both elevated in
T21 and significantly positively associated with DS IFN scores.
This group is highly enriched for immune regulatory factors, in-
cluding proteins encoded by ISGs in the DS IFN score (e.g.,
CXCL10), other ISGs not in the DS IFN score (e.g., CXCL11 and
GBP1), general markers of inflammation (e.g., the acute phase pro-
teins CRP and SAA1), proteins involved in antigen presentation
(e.g., B2M), T cell function (e.g., LAG3), and monocyte/macro-
phage activation (e.g., CD163) (Fig. 3E and fig. S4D). This class
also contains several subunits of the interconnected complement
and coagulation cascades, such as C9 (Fig. 3E). A minor class con-
sists of proteins depleted in T21 and positively correlated with IFN
scores (e.g., tryptophanyl-tRNA synthetase, WARS; fig. S4E).
Another set of proteins are depleted in T21 and not significantly
correlated with IFN scores. This subset represents proteins whose
abundance in plasma is likely depleted in T21 via IFN-independent
mechanisms. This group is enriched for proteins involved in the ex-
tracellular matrix organization, cell-cell adhesion, and cell migra-
tion, such as the collagen subunit COL2A1 and the proteoglycan
PRG3 (fig. S4F). This class also includes several factors involved
in platelet function, activation, and degranulation, such as
PDGFB, PPBP, and ANGPT1 (fig. S4F and data S4A). Notably,
another group of proteins are depleted in T21 and significantly anti-
correlated with IFN scores, including several prominent signaling
factors involved in growth, development, and morphogenesis,
such as the epidermal growth factor receptor (EGFR), the neurotro-
phic tyrosine kinase receptor 3 (NTRK3), the morphogenic factor
and TGFβ antagonist Noggin (NOG), and the Notch ligand Con-
tactin 1 (CNTN1) (Fig. 3F and fig. S4G). This class also contains
many important regulators of coagulation and fibrinolysis, such

as Kallistatin (SERPINA4), PROC, and SERPINF2 (Fig. 3F and
data S4A). Last, a small set contains proteins up-regulated in T21
and negatively correlated with IFN scores, such as AZGP1
(fig. S4H).

Together, these results indicate that IFN hyperactivity is signifi-
cantly associated with the global proteomic changes caused by T21,
whereby individuals with not only the strongest interferonopathy
show many changes indicative of inflammation but also the stron-
gest dysregulation of key growth factor signaling pathways, morpho-
genic factors, and coagulation and fibrinolysis pathways.
Furthermore, this analysis points to the likely existence of IFN-de-
pendent versus IFN-independent proteomic signatures in those
with T21.

ISG expression stratifies the degree of immune remodeling
in DS
Next, we investigated associations between DS IFN scores and the
immune cell landscape as measured bymass cytometry. People with
DS exhibit significant differences in relative frequencies of 14 of the
20 main immune clusters identified by unsupervised FlowSOM
clustering of the mass cytometry data (Fig. 4A; figs. S1F and S5, A
to C; and data S1F). These differences affect multiple major immune
cell lineages, as evidenced by increases in the proportion of baso-
phils, increases in the proportion of differentiated CD4+ and
CD8+ T cell subsets accompanied by decreases in their respective
naïve subsets, depletion of B cells, and shifts in the myeloid
lineage toward inflammatory subtypes [e.g., nonclassical monocytes
and CD1c+ myeloid dendritic cells (mDCs)]. To define how these
changes correlate to the extent of IFN hyperactivity among individ-
uals with T21, we used beta regression modeling with adjustment
for age and sex to test for significant relationships between the DS
IFN score and relative frequencies for each immune cell cluster in
T21 samples (Fig. 4A, fig. S6A, and data S5A). Results were nearly
identical when using 18, 52, or 138 ISGs to calculate DS IFN scores
(fig. S6A). Overall, IFN hyperactivity correlated positively with the
degree of global immune remodeling in T21 (Spearman rho = 0.59,
P = 0.007; Fig. 4B). For example, effector memory CD8+ T cells
(CD8+ TEM; cluster 6), which are elevated in T21, show significant
positive correlations with the DS IFN score (Fig. 4C). Conversely,
naïve CD8+ T cells (cluster 8) and naïve CD4+ T cells (cluster 3),
both of which are depleted in T21, are negatively correlated with
the DS IFN score (Fig. 4C and fig. S6B). Nonclassical monocytes
(cluster 9), which are elevated in DS, also correlate positively with
the IFN score (fig. S6B). CD27+ B cells (cluster 13), which are de-
pleted in T21, correlate negatively with the DS IFN score (fig. S6B).
Notable deviations from this trend are central memory CD4+ T cells
(CD4+ TCM; cluster 2), which are more frequent in T21 but nega-
tively correlated with DS IFN scores (Fig. S6B).

Next, we investigated whether variations in immune cell fre-
quencies are associated with mRNA expression of specific ISGs in
DS. Toward this end, we defined correlations among all 138 non-
chr21 ISGs elevated in DS and all 20 immune cell clusters using
beta regression modeling (data S5B). This exercise revealed distinct
relationships between ISG expression and immune remodeling
(Fig. 4D). For example, the ISGs CCL5 (Rantes) and IL10RA (IL-
10 receptor subunit A) are the most strongly associated with in-
creased frequencies of CD8+ TEMs, but not with increased frequen-
cies of nonclassical monocytes, which are instead associated with
overexpression of the costimulatory molecule CD86 and the
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transcription factor IRF5 (Fig. 4, D and E, and fig. S6C). Depletion
of naïve CD8+ and CD4+ T cells is strongly correlated with overex-
pression of IFN-inducible immunoproteasome subunits such as
PSMB8 and PSMB10 (Fig. 4, D and E, and fig. S6C), whereas deple-
tion of CD27+ B cells was more strongly tied to overexpression of
IL10RA and CCL5 (Fig. 4D). Therefore, specific immune changes

observed in DS can be linked to different aspects of the IFN tran-
scriptional response and distinct subsets of ISGs.

Together, these results indicate that the degree of IFN hyperac-
tivity is associated with the extent of global immune remodeling in
DS, whereby individuals with the most elevated IFN signaling show
the most notable differences in immune cell subsets, including the

Fig. 4. IFN hyperactivity shapes
the immune cell landscape inDS.
(A) t-Distributed stochastic neigh-
bor embedding (tSNE) plots of
mass cytometry data from 292 in-
dividuals with T21, color coded by
20 major immune clusters iden-
tified using FlowSOM (left), by fold
change (FC) in relative frequency
(as percentage of CD45+CD66lo

cells) in individuals with T21 versus
euploid controls (D21) (center),
and by fold change in relative fre-
quency per unit DS IFN score
(right). A total of 10,000 cells per
sample were used for clustering
and quantification; 500 cells per
sample were displayed. (B) Scat-
terplot comparing the effects of
T21 on relative frequencies of
immune cell clusters (y axis) to
their associations with transcrip-
tional DS IFN scores in 277 indi-
viduals with T21 (x axis). Color
intensity of points increases with
absolute rho value; the blue line
represents a linear fit, with 95%
confidence interval in gray. (C) Sina
plots (left) displaying the effects of
T21 on immune cell frequencies
and scatterplots (right) displaying
relationships to DS IFN scores
among those with T21. (D)
Heatmap displaying log2-trans-
formed fold change values (per
unit of mRNA expression) for ISGs
with ≥1 significant association
with immune cell clusters. Aster-
isks denote q < 0.1 by beta regres-
sion. Rows and columns are
organized by hierarchical cluster-
ing, and rows are split into four
subgroups for clarity. (E) Scatter-
plots displaying the relationship
between relative frequencies of
immune cell clusters and whole
blood mRNA levels for indicated
ISGs among those with T21. Points
in scatterplots in (C) and (E) were
colored by density, with blue lines
representing beta regression fits
and 95% confidence intervals in
gray; significance is defined as q <
0.1 (10% FDR) by beta regression.
Boxes in sina plots represent interquartile ranges and medians, with notches approximating 95% confidence intervals. See also figs. S5 and S6.
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strongest signs of T cell differentiation, B cell depletion, and mono-
cyte activation.

IFN hyperactivity reveals signs of metabolic cross-talk
among immune cell lineages
Next, we aimed to define associations between DS IFN scores and
metabolic changes observed in those with T21. Targeted metabolo-
mics analysis using mass spectrometry methods revealed differen-
tial abundance of 119 of the 174 metabolites measured (54 up-
regulated and 65 down-regulated), demonstrating the profound
impact of T21 on human physiology (fig. S1E and data S1E). Key
findings include dysregulation of fatty acid, eicosanoid, and carni-
tine metabolism; depletion of many circulating amino acids and nu-
cleotides; and activation of the kynurenine pathway of tryptophan
catabolism (Fig. 5A). We then defined correlations between DS IFN
scores and metabolite levels, which revealed an overall significant
positive association between IFN hyperactivity and metabolic dys-
regulation in DS (Spearman rho 0.21, P = 2.46 × 10−2; Fig. 5B and
data S6). Similar results were obtained using the 52 and 138 ISG
scores (fig. S7A). Notably, three of the metabolites most positively
associated with DS IFN scores belong to the kynurenine pathway of
tryptophan catabolism (i.e., 5HIAA, kynurenine, and quinolinic
acid), all of which are elevated in DS (Fig. 5, B and C). Furthermore,
the DS IFN scores correlate positively with the kynurenine/trypto-
phan ratio, a common metric of activation of the kynurenine
pathway (Fig. 5D). This result could be explained by IFN-dependent
induction of the indoleamine 2,3-dioxygenase 1 (IDO1) enzyme in
cells with T21 (15), as IDO1 catalyzes the rate-limiting step in the
kynurenine pathway (29). DS IFN scores correlated positively and
significantly with levels of IDO1 mRNA in individuals with
T21 (Fig. 5E).

Activation of the kynurenine pathway via induction of IDO1 is
recognized as an immune modulatory mechanism, whereby kynur-
enine can act as an immunometabolite to suppress the function of
effector T cells and NK (natural killer) cells through various mech-
anisms (30). To investigate this pathway in more detail in the
context of DS, we tested for associations between IDO1 mRNA ex-
pression or kynurenine levels and relative frequencies of immune
clusters using beta regression. Notably, IDO1 expression displayed
significant positive associations with several myeloid subsets, in-
cluding basophils, nonclassical monocytes, and classical mono-
cytes/monocytic myeloid-derived suppressor cells (M-MDSCs)
(Fig. 5, F and G, and fig. S7B). Whereas the association with baso-
phils is unexpected, the association with monocytic lineages agrees
with the notion that IDO1 is expressed preferentially by professional
antigen-presenting cells (30). The pattern of correlations between
kynurenine levels and immune cell subsets was clearly different
than that observed for IDO1, showing significant negative associa-
tions with naïve T cells (CD8+ and CD4+) and mDCs but a positive
association with polymorphonuclear (PMN) MDSCs (Fig. 5, H and
I, and fig. S7B). The negative correlation between kynurenine and
naïve CD4+ T cell subsets could be potentially explained by the fact
that kynurenine drives CD4+ T cell differentiation toward T regula-
tory cells (Tregs) (30), yet Treg frequencies were not significantly as-
sociated with kynurenine levels in our analysis (data S6C). These
findings could be interpreted as a cross-lineage metabolic cross-
talk, whereby up-regulation of a metabolic gene in one lineage
(i.e., IDO1 in selected myeloid cell types) leads to changes in cell
function in a different lineage through the action of a bioactive

metabolite (i.e., kynurenine modulation of T cell function). Togeth-
er, these results reveal the metabolic signature of IFN hyperactivity
signaling in DS, while demonstrating the power of the multiomics
datasets to illuminate pathways dysregulated in those with T21.

IFN hyperactivity distinguishes a clinical subgroup in DS
Next, we investigated the interplay between DS IFN scores and
common co-occurring conditions in DS. Individuals with DS
display elevated prevalence of many medical conditions across the
life span, with strong interindividual variability and highly combi-
natorial occurrence (5). To explore the relationship between the pat-
terns of co-occurring conditions and IFN hyperactivity, we
calculated pairwise distances between 304 participants with T21,
using the Gower method to incorporate information on both
history of co-occurring conditions and IFN scores, followed by clus-
tering using the partitioning aroundmedoids (PAM) algorithm (see
Materials andMethods).We used only co-occurring conditions that
affected at least 10 participants in the T21 cohort, arriving at a two-
cluster solution (Fig. 6A), with cluster 2 displaying a significant ten-
dency toward higher DS IFN scores (Fig. 6B). These two clusters of
participants display clear differences in their pattern of co-occur-
ring conditions, with seven of these conditions being significantly
overrepresented in cluster 2 (Fig. 6, A and C). Notably, the condi-
tions enriched in cluster 2 include multiple forms of CHD (i.e.,
atrioventricular canal defect, atrial septal defect, ventricular septal
defect, and tricuspid valve regurgitation), leading to overrepresen-
tation of individuals with “congenital heart repair” in this group.
Also overrepresented within cluster 2 are cases positive for anti–
thyroid peroxidase (TPO)/thyroglobulin (TG) antibodies and
Grave’s hyperthyroidism. Cluster 2 also shows trends toward in-
creased rates of “subclinical hypothyroidism” (Fig. 6A). Given
that cluster 2 showed significant tendency toward higher DS IFN
scores (Fig. 6B), we next compared DS IFN scores in those partic-
ipants with DS with versus without each of the independent condi-
tions overrepresented in this cluster. Affected individuals tend to
have higher DS IFN scores, although only reaching statistical signif-
icance for the overall category “congenital heart defect repair”
(Fig. 6, D and E). Overall, these analyses suggest that individuals
with stronger IFN hyperactivity may be more prone to several
major comorbidities, although larger numbers of cases/controls
for each co-occurring condition would be required for a definitive
analysis.

JAK inhibition attenuates IFN signaling in DS with
therapeutic benefit
All three types of IFN signaling use JAK1 for signal transduction,
suggesting that small molecule inhibitors of this enzyme could ame-
liorate the interferonopathy of DS (31). To test this notion, we eval-
uated IFN signaling in a research participant taking the JAK
inhibitor tofacitinib (Xeljanz) for the treatment of alopecia areata,
an autoimmune condition leading to hair loss that is more common
in people with DS. This participant has also been affected by other
common co-occurring conditions in DS, such as CHD (both ASD
and VSD repaired surgically), pediatric pulmonary hypertension,
pediatric hypercholesterolemia, AITD, hidradenitis suppurativa,
polycystic ovary syndrome, and mild hearing loss. This individual
experienced remarkable therapeutic benefit when using tofacitinib
for alopecia areata (32), leading to periods of voluntary treatment
interruption. Over the course of ~3 years, this participant provided
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Fig. 5. IFN hyperactivity reveals signs of metabolic cross-talk among immune cell lineages. (A) Barplot summarizing metabolites with significant differences in
relative abundance in plasma of individuals with T21 versus euploid controls (q < 0.1, 10% FDR). (B) Scatterplot comparing the effects of T21 on plasma metabolites with
their correlations to transcriptional DS IFN scores in 304 individuals with T21. The color intensity of points increases with absolute rho value; the blue line represents a
linear fit, with 95% confidence interval in gray. (C to E) Sina plots (left) displaying plasma metabolite levels, kynurenine:tryptophan ratios, or IDO1 mRNA expression and
scatterplots (right) displaying their relationships to DS IFN scores in T21. Scatterplots show Spearman correlation rho and q values, with significance defined as q < 0.1
(10% FDR); points were colored by density, with blue lines representing linear fits and 95% confidence intervals in gray. (F) tSNE plot of mass cytometry data for 277
individuals with T21, colored by fold change (percentage of CD45+CD66lo cells per unit of IDO1 mRNA expression) for clusters with significant associations with IDO1
mRNA expression (beta regression q < 0.1). (G) Scatterplots comparing relative cluster frequencies with IDO1 mRNA expression among those with T21. (H) tSNE plot of
mass cytometry data for 292 individuals with T21, colored by fold change (percentage of CD45+CD66lo cells per unit of kynurenine abundance) for clusters with signifi-
cant associations with plasma kynurenine levels (beta regression q < 0.1). (I) Scatterplots comparing relative cluster frequencies with plasma kynurenine levels among
thosewith T21. Boxes in sina plots represent interquartile ranges andmedians, with notches approximating 95% confidence intervals. For scatterplots in (G) and (I), points
were colored by density, with blue lines representing beta regression fits and 95% confidence intervals in gray; significance is defined as q < 0.1 by beta regression. See
also fig. S7.
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Fig. 6. IFN hyperactivity distinguishes a clinical cluster in DS. (A) Heatmap comparing the observed over expected ratio for proportions of cases for co-occurring
conditions across two clusters of individuals with DS. Rows are organized by hierarchical clustering. Bold row labels indicate q < 0.1 (10% FDR) for Fisher’s exact test. (B)
Sina plot comparing DS IFN score distributions across the two clusters, with P value for Mann-Whitney U test in the top left. (C) Odds ratio plot for Fisher’s exact test of
proportions (cases versus controls) across clusters for history of co-occurring conditions. Only conditions with q < 0.1 (10% FDR) are displayed. The size of square points is
inversely proportional to q value; error bars represent 95% confidence intervals. (D) Heatmap displaying median DS IFN scores for cases (true) versus controls (false) for
each co-occurring condition in (C). (E) Sina plot comparing DS IFN score distributions in cases (true) versus controls (false) for “congenital heart defect repair,”with the q
value for Mann-Whitney U test in the top left.
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blood samples while taking the drug (n = 7) and during periods of
no treatment (n = 4) (Fig. 7A; see Materials and Methods). Using
the whole-blood RNA-seq analysis of these samples, we monitored
the impact of JAK inhibition on the DS IFN score, which revealed a
significant reduction while on the drug (Fig. 7B and data S7A).
When not taking tofacitinib, DS IFN scores for this participant
fell mostly within the upper range of that observed for individuals
with DS. When taking the medicine, the IFN scores decreased
toward the high upper range observed for the euploid controls, in-
dicating that therapeutic benefit was achieved without suppression

of IFN signaling below the normal range in the general population.
Multiple ISGs in the DS IFN score were clearly decreased when the
participant was on the drug (e.g., RSAD2, IFI44L, ISG15, and
GZMA) (Fig. 7, C and D). Broader analysis of all 138 ISGs not
encoded on chr21 showed widespread down-regulation while the
participant was on the medicine (e.g., IFIT1, MX1, OAS3, and
STAT1) (Fig. 7, C and D, and fig. S8A). Notably, tofacitinib treat-
ment led to a modest increase in mRNA expression of the four
IFNRs encoded on chr21, but otherwise decreased expression of
ISGs encoded on chr21, such as MX1 (fig. S8A). Thus, although

Fig. 7. JAK inhibition attenuates IFN signaling with therapeutic benefit in DS. (A) Schematic outlining the research blood draw collection schedule and tofacitinib
treatment status for the research participant. (B) Dot plot comparing DS IFN scores for samples taken when the research participant was off (n = 4) versus on (n = 7)
tofacitinib treatment. Boxes represent interquartile ranges and medians for each group. Shaded areas represent the interquartile ranges for euploid controls (gray) and
T21 samples (green) in the HTP cohort, with dashed lines indicating median values. (C) Sina plot comparing distributions of fold changes for ISGs in T21/controls (green)
versus on/off tofacitinib (blue). Boxes represent interquartile ranges andmedians, with notches approximating 95% confidence intervals. (D) Dot plots comparing mRNA
expression levels for indicated genes in samples taken when the participant was off versus on tofacitinib treatment. Boxes represent interquartile ranges andmedians for
each group. Shaded areas represent the interquartile ranges for euploid controls (gray) and T21 samples (green), with dashed lines indicatingmedian values. (E) Heatmap
comparing results of GSEAwith Hallmark gene sets for whole blood transcriptome changes in T21/control versus on/off tofacitinib. Color coding represents NES; asterisks
indicate gene sets with significant positive (orange) or negative (purple) enrichment (q < 0.1, 10% FDR). (F) Sina plot comparing the fold change in the plasma levels of 26
IFN-inducible proteins in T21/controls (green) versus on/off tofacitinib (blue). (G) Dot plot comparing relative abundance in plasma for indicated proteins in samples
taken when the participant was off versus on tofacitinib treatment. Boxes represent interquartile ranges and medians for each group. Shaded areas represent the inter-
quartile ranges for euploid controls (gray) and T21 samples (green), with dashed lines indicating median values. See also fig. S8.
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the drug does not correct the increased IFNR expression driven by
T21, it dampens downstream IFN signaling.

To assess the impact of JAK inhibition more globally, we per-
formed GSEA on the whole blood transcriptome against Hallmark
gene sets. Of the top 10 positively enriched gene signatures in T21, 7
were negatively enriched (i.e., down-regulated) by the drug, includ-
ing IFN gamma response, IFN alpha response, inflammatory re-
sponse, oxidative phosphorylation, allograft rejection, mammalian
target of rapamycin complex 1 (mTORC1) signaling, and IL-2/
STAT5 signaling (Fig. 7E and fig. S8B). Thus, JAK inhibition can
normalize many of the transcriptome signatures associated with
DS in the peripheral immune compartment.

Last, to define whether attenuation of the ISG signature was also
observed at the protein level, we evaluated the impact of JAK inhi-
bition on the plasma proteome by evaluating 10 samples obtained
from this research participant (6 on treatment and 4 off treatment)
(data S7B). The SOMAscan platform used was able to measure
levels of 65 of the proteins encoded by the 138 DS ISGs. Of these
proteins, 26 were significantly elevated in the plasma of participants
with DS in the HTP cohort, many of which were down-regulated by
tofacitinib treatment in this research participant (e.g., CXCL9 and
CXCL10; Fig. 6, F and G). Together, these results indicate that the
interferonopathy of DS is amenable to pharmacological modulation
with JAK inhibitors, with potential for multidimensional benefits in
this population.

JAK inhibition attenuates hyperactive IFN signaling across
multiple organs
Last, we investigated IFN signaling and the impacts of JAK inhibi-
tion across multiple organ systems in a mouse model of DS. Toward
this end, we used Dp(16Lipi-Zbtb21)1Yey/J mice (referred to
henceforth as Dp16) (33), a well-characterized model that harbors
a segmental duplication of a region of murine chr16 orthologous to
human chr21, leading to triplication of ~120 genes, including the
four Ifnrs. Dp16 mice display many phenotypes relevant to DS
(33), including a dysregulated immune response resulting in
lethal hypersensitivity to IFN-inducing agents that can be counter-
acted with JAK1 inhibitors (34). Furthermore, correction of Ifnr
copy number in this model rescues multiple hallmarks of DS
(17). We therefore examined the effects of JAK inhibition on gene
expression in key organs relevant to DS pathophysiology. Transcrip-
tome analysis of heart, lung, liver, and brain tissues from adult Dp16
mice identified hundreds of differentially expressed genes (DEGs)
up-regulated or down-regulated in this strain relative to wild-type
(WT) controls (Fig. 8A). Expectedly, most triplicated genes were
up-regulated across Dp16 tissues, including the Ifnrs. We then an-
alyzed expression changes in adult Dp16 mice treated for several
weeks with the JAK1/2 inhibitor baricitinib, which we previously
reported rescues the immune hypersensitivity phenotype (34).
Notably, baricitinib treatment causes a global attenuation of gene
expression changes in all tissues (Fig. 8B). Although expression of
triplicated genes is largely unaffected by the drug, DEGs encoded
elsewhere in the genome display a significant overall decrease in ab-
solute fold changes. GSEA identifiedmany gene signatures dysregu-
lated in Dp16 that were attenuated upon baricitinib treatment (fig.
S9A). Consistent with previous work (34), GSEA detected up-reg-
ulation of multiple inflammatory signatures in all tissues, including
IFN alpha and IFN gamma responses (Fig. 8C). Baricitinib

attenuated the expression of multiple ISGs in all tissues tested,
with variable effects on other inflammatory signatures (Fig. 8, C
to E).

Notably, many other gene expression signatures dysregulated in
Dp16 were also attenuated by baricitinib treatment (fig. S9A).
Salient examples include up-regulation of genes involved in extra-
cellular matrix remodeling and epithelial-to-mesenchymal transi-
tion (EMT) in the heart (e.g., Vegfa), activation of mTORC1
signaling in the lung (e.g., Hspa5), induction of complement and
coagulation factors in the liver (e.g., C8b), and down-regulation of
oxidative phosphorylation genes in the brain (e.g., Retsat) (fig. S9, B
and C). Overall, these results indicate that JAK inhibition has broad
effects not only on signaling pathways dysregulated in DS, most
prominently inflammatory signatures, but also onmany other path-
ways of potential relevance for DS pathophysiology.

DISCUSSION
The genetic cause of DS has been known since 1959, when Lejeune
and colleagues (1) demonstrated the presence of an extra copy of
chr21 in cells from individuals with DS. Forty years later, at the
dawn of the new millennium, chr21 was largely sequenced,
leading to the identification of ~220 protein-coding genes on this
chromosome (35). Since then, the field has been challenged by
the difficulty in defining cause-effect relationships between overex-
pression of specific genes on chr21 and/or general effects of the an-
euploidy and the highly heterogeneous developmental and clinical
hallmarks of DS. Increasing appreciation for additional research in
this area has been driven by the remarkable growth of the popula-
tion with DS over the last 50 years (36) and also by the observation
that T21 modulates the appearance and severity of many medical
conditions also affecting the general population (2). Beyond a
core set of developmental and neurological phenotypes, individuals
with DS show lower rates of somemajor medical conditions, such as
most solid malignancies and hypertension, while being at high risk
of others, such as Alzheimer’s disease, specific autoimmune disor-
ders, CHD, autism, and severe COVID-19 (5). Therefore, elucidat-
ing themechanisms by which T21 causes this distinct clinical profile
would benefit not only people with DS but also the general
population.

Within this context, we report here an integrated multiomics
analysis of IFN hyperactivity among individuals with DS. In 1974,
Tan and colleagues (37) reported that cells with T21 were hypersen-
sitive to early IFN preparations. Thereafter, several reports by the
Epstein and Maroun labs further documented hyperactive IFN sig-
naling in human cell cultures and early animal models of DS (16,
38–44). However, these pioneering studies did not lead at the
time to a widespread appreciation that DS could be understood,
in part, as a disorder caused by chronic IFN hyperactivity and con-
sequent immune dysregulation across the life span. Recently, with
the advent of omics approaches, it became clear that IFN hyperac-
tivity is a top hallmark of the transcriptome, proteome, metabo-
lome, and immune changes elicited by T21 (9–13, 15).
Mechanistically, this could be explained in part by the fact that
four of the six IFNR subunits are encoded on chr21. In multiple
mouse models carrying triplicated Ifnr genes, IFN hyperactivity is
a conserved biosignature across diverse brain regions and develop-
mental stages (45). Furthermore, normalization of Ifnr copy
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Fig. 8. JAK inhibition attenuates global dysregulation of gene expression in a mouse model of DS. (A) Volcano plots summarizing results of transcriptome analysis
using DESeq2 of indicated tissues obtained from vehicle-treated adult WT versus Dp16 mice, highlighting genes triplicated in Dp16 (blue), the four Ifnrs (red), and non-
triplicated DEGs (gray), with all other genes in black; q values were determined using the Benjamini-Hochberg approach. Number of animals: WT vehicle, n = 2 (2 males);
Dp16 vehicle, n = 4 (2 males and 2 females); and Dp16 + JAKi, n = 4 (2 males and 2 females). (B) Sina plots displaying absolute fold changes for nontriplicated Dp16 DEGs
(gray) and genes triplicated in Dp16 (blue) for Dp16 (vehicle) versus WT or Dp16 + JAKi (baricitinib treatment) versus WT comparisons, with P values for two-sided Mann-
Whitney U tests, boxes representing interquartile ranges and medians, and notches approximating 95% confidence intervals. (C) Heatmaps displaying NES from GSEA of
transcriptome fold changes for the indicated comparisons for inflammation-related Hallmark gene sets, sorted by NES for Dp16/WT; asterisks indicate q < 0.1 defined by
GSEA. (D) Heatmaps representing median expression z scores per genotype (calculated from RPKM values) for example genes from the indicated gene sets. (E) Sina plots
for example genes from the indicated gene sets; P and q values were determined by DESeq2 with significance defined as q < 0.1.
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number attenuates diverse hallmarks of DS, including embryonic
development and neuronal viability (16), as well as immune hyper-
sensitivity, septal heart defects, craniofacial abnormalities, and cog-
nitive impairments (17). Today, the interferonopathy of DS is a
subject of intense study (46, 47), including ongoing clinical trials
testing the safety and efficacy of JAK inhibition in DS
(NCT04246372 and NCT05662228) (32, 48). Despite these advanc-
es, the contribution of chronic IFN hyperactivity to the myriad phe-
notypes and clinical effects observed in the population with DS
remains to be elucidated. Notably, IFN hyperactivity is a recognized
driver of type I interferonopathies, a group of monogenic disorders
leading to overproduction of IFNs, as well as a range of autoinflam-
matory conditions, most prominently SLE (18, 19, 49). Therefore,
our integrated multiomics analysis of IFN hyperactivity in DS
could potentially provide insights into the pathogenesis of other
medical conditions.

Using RNA-based IFN scores, we defined associations between
variable IFN signaling and global changes in the proteome, periph-
eral immune cell lineages, metabolomic changes, and clinical diag-
noses in DS. One key conclusion from these efforts is that the
interferonopathy of DS should be considered as a “mixed-type in-
terferonopathy” associated with widespread overexpression of type
I, type II, and type III IFNRs, with clear potential for type II and
type III IFNs to be major contributors to IFN hyperactivity and dys-
regulation of downstream events. Although multiple immune and
nonimmune cells with T21 display hypersensitivity to type I IFNs
(9, 10, 13, 37), our results demonstrate that the peripheral IFN tran-
scriptional response correlates instead with circulating protein
levels of IFNG and IFNL1. Although individuals with DS do not
present markedly elevated levels of circulating IFNs as seen in
other interferonopathies or during viral infections, the IFN tran-
scriptional response is nonetheless elevated, tracking preferentially
with IFNG levels. This observation could have clear therapeutic im-
plications in DS, suggesting that targeting type I IFN specifically,
such as in the case of SLE treatment with the monoclonal antibody
sifalimumab, may have lesser therapeutic value in DS. Instead, tar-
geting JAK1, which is required for all three types of IFN signaling,
could prove more beneficial.

Another key conclusion is that IFN hyperactivity correlates sig-
nificantly with the global effects of T21 on the circulating proteome,
immune cell lineages, andmetabolic changes. Consistently, individ-
uals with DS with the highest IFN transcriptional responses show
the most pronounced changes in their multiomics profiles. While
some of these correlations were perhaps expected, such as the pos-
itive association between IFN hyperactivity and various inflamma-
tory markers, others are worthy of further investigation, such as the
observed negative correlation between IFN activity and circulating
levels of factors involved in major developmental pathways (e.g.,
EGFR, NTRK3, NOG, and CNTN1). Throughout these analyses,
we defined molecular and cellular changes observed in DS that
could be associated to IFN hyperactivity versus those that could
not. For example, whereas depletion of naïve T cell subsets is
clearly associated with elevated IFN signaling, increased frequency
of basophils is not. Therefore, the datasets described here provide a
resource for the community to dissect different molecular and cel-
lular pathways underlying the pathobiology of DS. In this regard,
depletion of naïve T cell subsets concurrent with increase in T
cell effector types could be explained by the known effects of IFN
signaling on T cell activation and differentiation, and likely driven

by overexpression of one or more IFNRs. However, other mecha-
nisms must be invoked at this point to explain the elevated frequen-
cies of basophils in DS. One important caveat is that our analysis is
cross-sectional in nature, which prevents an evaluation of changes
that could be caused by chronic IFN hyperactivity over long periods
of time. Thus, it is possible that an increase in basophils is part of the
interferonopathy of DS, but not easily associated with IFN activity at
a single point in time.

A key benefit of the multiomics datasets presented here is that
they enable delineations of molecular and cellular pathways not
easily elucidated otherwise. This is exemplified by our study of
the kynurenine pathway. Somewhat expectedly, individuals with
the stronger IFN transcriptional responses showed the highest
levels of circulating tryptophan catabolites produced within the ky-
nurenine pathway, which could be explained by IFN-driven overin-
duction of IDO1 (15). However, the immune cell types associated
with IDO1 expression and kynurenine production are different.
Whereas IDO1 expression associates with elevated frequency of
monocytes and basophils, kynurenine levels associate with deple-
tion of naïve T cell subsets. This result could be explained by an
immune cross-talk between these key myeloid and lymphoid cell
types, whereby IDO1 induction in the myeloid lineage would lead
to production and secretion of kynurenine, which in turn could
exert immunomodulatory effects in T cells and other lymphoid
cell types (30).

Integrated analysis of IFN scores and clinical metadata revealed
that IFN hyperactivity at a single cross-sectional time point associ-
ates with increased probability of certain diagnoses, most promi-
nently CHD and AITD. Various forms of CHD affect ~50% of
newborns with T21, but the etiology of this hallmark of DS
remains unknown. Recently, we demonstrated that normalization
of Ifnr copy number prevents CHD in the Dp16 mouse model of
DS, and that Ifnr triplication causes transcriptome changes in the
developing murine heart, indicative of activated JAK/STAT signal-
ing and decreased cell proliferation (17). Furthermore, single-nucle-
otide polymorphisms (SNPs) in the human IFNR gene cluster have
been associated with CHD risk in DS (50). These results support the
notion that elevated IFN signaling during embryonic development
could impair organogenesis (51, 52), while suggesting that individ-
uals with DS who experienced high IFN activity in utero would be
more likely to have both a history of CHD and AITD and stronger
IFN hyperactivity later in life. The association between IFN hyper-
activity and history of AITD in DS is supported by observations in
the general population, as SNPs linked to elevated IFN signaling
have been associated with increased risk of diverse autoimmune dis-
orders (53), and whereby therapeutic administration of recombi-
nant IFNs was shown to increase the risk of AITD (54).

One key limitation of our study is that, although we defined in-
formative significant correlations between IFN transcriptional re-
sponses and various molecular and cellular events in DS, these
associations should be interpreted with caution when trying to
infer cause-effect relationships. Nevertheless, the analyses of longi-
tudinal samples collected from an individual undergoing periodic
treatments with the JAK inhibitor tofacitinib demonstrated that
IFN hyperactivity is attenuated in this individual without overt
immune suppression, with consequent normalization of many tran-
scriptional signatures dysregulated in DS, thus involving elevated
JAK/STAT signaling as a driver of many of the changes observed.
Although the limited sample size obtained from a single individual

SC I ENCE ADVANCES | R E S EARCH ART I C L E

Galbraith et al., Sci. Adv. 9, eadg6218 (2023) 28 June 2023 15 of 22



prevents a definitive assessment of the impacts of JAK inhibition on
the pathobiology of DS, these results support the ongoing testing of
tofacitinib in larger cohorts, including assessment of safety, efficacy
to normalize diverse inflammatory markers, effects on autoimmune
skin pathology and AITD, and analyses of effects on neurological
health and quality of life (NCT04246372 and NCT05662228).

Results obtained in the Dp16 mouse model of DS illuminate the
potential beneficial impacts of JAK inhibition across diverse organ
systems. Consistently, baricitinib treatment attenuated global gene
expression changes without significantly affecting overexpression of
the triplicated genes, indicating that JAK/STAT signaling contrib-
utes to a sizable fraction of the global effects of T21, even in the con-
trolled, pathogen-free environment of the vivarium. These results
also point to effects of elevated JAK/STAT signaling well beyond in-
flammatory pathways and immune control. For example, JAK inhi-
bition normalized signatures indicative of extracellular matrix
remodeling in the heart (e.g., EMT); signatures of dysregulated
mTORC1 signaling in the lung, signs of aberrant activation of the
coagulation and complement cascades in the liver; and signatures of
decreased mitochondrial metabolism in the brain. Future research
studies will be needed to define the potential benefits of such atten-
uation of gene expression changes in terms of organ development
and function.

Recent advances indicate that immune modulation could poten-
tially address diverse aspects of DS across the life span, even perhaps
prenatally. Correction of Ifnr copy number in mouse models of DS
rescued, either partially or totally, key phenotypes that initiate
during embryonic development, such as CHD and craniofacial
anomalies (17). Furthermore, prenatal treatment with the anti-in-
flammatory and antioxidant natural compound apigenin improved
early development and cognitive function in mouse models of DS,
concomitant with reduction of IFNG levels (55). Although intake of
JAK inhibitors is not recommended during pregnancy, tofacitinib
use during pregnancy in rheumatic diseases or ulcerative colitis
was not associated with increased risk to the fetus relative to risks
attributed to the underlying disease (56–58). After birth, JAK inhib-
itors could potentially benefit children with DS with signs of strong
immune dysregulation, including those affected by any of the ap-
proved indications for the general population, such as myelofibro-
sis, polycythemia vera, rheumatoid arthritis, psoriatic arthritis,
juvenile idiopathic arthritis, axial spondyloarthritis, ankylosis spon-
dylitis, ulcerative colitis, atopic dermatitis, alopecia areata, graft-
versus-host disease, and COVID-19 (59); however, not all of these
indications are approved for the pediatric population. Notably, to-
facitinib is approved for the treatment of children and adolescents 2
years and older with active polyarticular course juvenile idiopathic
arthritis (59). Later in life, JAK inhibition may benefit those with a
high burden of autoimmune conditions more prevalent in DS, such
as AITD, celiac disease, and various immune skin conditions, all of
which have been tied in the general population to either IFN hyper-
activity or cytokines shown here to associate with IFN scores in DS
(60, 61). Individuals with DS are at high risk of severe complications
and mortality from SARS-CoV-2 infections (6, 62) and stand to
benefit from JAK inhibitors and other anti-inflammatory agents ap-
proved for severe COVID-19 (63). Last, JAK inhibitors could poten-
tially benefit individuals with signs of immune-related neurological
dysfunction, such as in cases of Down syndrome regression disorder
(DSRD) (64). Tofacitinib is now being tested in a clinical trial for
DSRD (NCT05662228). In mouse models of Alzheimer’s disease,

IFNRs encoded on human chr21 were found to be required for
disease progression (65, 66), and type I IFN signaling was shown
to drive neuroinflammation, microglial dysfunction, neuronal sen-
escence, and death in experimental models of DS and Alzheimer’s
disease (67, 68). In all these scenarios, we hypothesize that JAK in-
hibitors may be most beneficial to those individuals displaying high
DS-IFN scores or high levels of cytokines associated with the DS-
IFN score (e.g., TNFα, IL-6, and IP10), but the value of such a strat-
ification strategy will require additional research. In summary, the
results described here advance our collective understanding of both
the interferonopathy of DS and the broader impacts of IFN signal-
ing in human biology.

MATERIALS AND METHODS
Study design
All study participants were enrolled in the Crnic Institute’s HTP
under a study protocol approved by the Colorado Multiple Institu-
tional Review Board (COMIRB 15-2170 and NCT02864108; see
also www.trisome.org). Written informed consent was obtained
from all study participants or their legal guardians. Biospecimen
collection in the HTP biobank includes a blood draw, a tongue
swab, and optional urine and/or stool samples. A clinical history
for each participant was curated from both medical record review
and a participant/family report, with medical record taking prece-
dence in cases of discordance between the two sources. All co-oc-
curring conditions represent a past or current diagnosis of a
condition, which may or may not have been active at the time of
the blood draw. The biological datasets described here were gener-
ated from deidentified blood-derived biospecimens and linked to
demographics and clinical metadata for analysis. The overall HTP
cohort used for this study consisted of 502 individuals, 356 with DS.
Cohort information specific to each dataset can be found in
data S1A.

Blood sample collection and processing
Peripheral blood samples were collected into PAXgene RNA tubes
(QIAGEN, catalog no. 762165) and BD Vacutainer K2 EDTA tubes
(BD, catalog no. 366643). Samples in PAXgene tubes were pro-
cessed for RNA-seq as described below. For mass cytometry, 2 ×
0.5ml of whole blood was withdrawn from each EDTA tube for pro-
cessing as described below. For the remaining measurements,
EDTA tubes were processed within 2 hours of blood draw by cen-
trifugation at 700g for 15 min to separate plasma, buffy coat (white
blood cells), and red blood cells, which in turn were aliquoted, flash-
frozen, and stored at −80°C. Subsequent processing was carried out
as described below, with aliquots selected to minimize freeze/
thaw cycles.

Whole-blood RNA-seq
Whole-blood RNA was extracted from PAXgene RNA tubes and
purified using a PAXgene blood RNA kit (QIAGEN, catalog no.
762164). RNA quality was assessed using a 2200 TapeStation
system (Agilent) and quantified on a Qubit fluorometer (Thermo
Fisher Scientific). Globin RNA depletion, poly-A(+) RNA enrich-
ment, and strand-specific library preparation were carried out using
a GlobinClear kit (Thermo Fisher Scientific, catalog no. AM1980),
NEBNext Poly(A) mRNA magnetic isolation module, and
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NEBNext Ultra II directional RNA library prep kit for Illumina
(New England Biolabs, catalog nos. E7490 and E7760). Paired-
end 150–base pair (bp) sequencing was carried out on an Illumina
NovaSeq 6000 instrument by Novogene Co. Ltd. and delivered in
FASTQ format.

SOMAscan plasma proteomics
A total of 125 μl of EDTA plasma was analyzed by SOMAscan using
established protocols (69). Each of the 4500+ SOMAmer reagents
binds a target peptide and is quantified on a custom Agilent hybrid-
ization chip. Normalization and calibration were performed accord-
ing to SOMAscan Data Standardization and File Specification
Technical Note (SSM-020) (69). The output of the SOMAscan
assay is reported in relative fluorescence units (RFU).

Profiling of plasma inflammatory markers using
MSD assays
For each EDTA plasma sample, two technical replicates (12 to 25 μl
depending on required dilution) were measured using the MSD
multiplex immunoassay platform V-PLEX Human Biomarker 54-
Plex Kit (catalog no. K15248D) on a MESO QuickPlex SQ 120 in-
strument. Assays were performed according to the manufacturer’s
instructions, and concentration values were calculated against a
standard curve using the provided calibrators. MSD data are report-
ed as concentration values in picograms per milliliter of plasma.

Mass cytometry of white blood cells
For mass cytometry analysis, 2 × 0.5 ml of whole blood samples un-
derwent red blood cell lysis and white blood cell fixation using the
TFP FixPerm Buffer (Transcription Factor Phospho Buffer Set, BD
Biosciences, catalog no. 558049), followed by a wash in 1× phos-
phate-buffered saline (PBS) (Rockland, catalog no. MB-008).
White blood cells were then resuspended in cell staining buffer
(CSB; Fluidigm, catalog no. 201068) and stored at −80°C. Before
antibody staining, samples were thawed at room temperature,
washed in CSB, barcoded using a Cell-ID 20-Plex Pd barcoding
kit (Fluidigm, catalog no. PRD023), and combined per batch.
Each batch was composed of up to 19 samples along with a
common reference sample. Antibodies used for staining were
either purchased preconjugated to metal isotopes or conjugated
using a Maxpar antibody labeling kit (Fluidigm, catalog no.
201160B). See data S9 for antibody details. Staining dilutions for
each antibody were titrated and validated using the common refer-
ence sample and comparison to relative frequencies for major cell
types obtained by independent flow cytometry analysis. Staining of
surface markers was carried out in CSB for 30 min at 4°C, with the
addition of an Fc receptor binding inhibitor (eBioscience/Thermo
Fisher Scientific, catalog no. 14-9161-73), followed by a wash with
CSB. Cells were then permeabilized in buffer III (Transcription
Factor Phospho Buffer Set, BD Pharmingen, catalog no. 563239)
for 20min at 4°C and washed with perm/wash buffer (Transcription
Factor Phospho Buffer Set, BD Pharmingen, catalog no. 563239).
Staining of intracellular transcription factors and phospho-epitopes
was carried out in perm/wash buffer (Transcription Factor Phospho
Buffer Set, BD Pharmingen, catalog no. 563239) for 1 hour at 4°C,
followed by a wash with CSB. Barcoded and stained cells were then
labeled with Cell-ID Intercalator-Ir (Fluidigm, catalog no.
201192A) and analyzed on a Helios instrument (Fluidigm). Mass

cytometry data were exported as v3.0 FCS files for preprocessing
and analysis.

Mass spectrometry–based plasma metabolomics and
lipidomics
Plasma samples were thawed on ice and extracted via a modified
Folch method (chloroform/methanol/water 8:4:3). Briefly, 20 μl of
sample was diluted in 130 μl of liquid chromatography–mass spec-
trometry grade water, 600 μl of ice-cold chloroform/methanol (2:1)
was added, and the samples were vortexed for 10 s. Samples were
then incubated at 4°C for 5 min, quickly vortexed (5 s), and centri-
fuged at 14,000g for 10 min at 4°C. The top (i.e., aqueous) phase was
transferred to a new tube for metabolomics analysis and flash-
frozen. The bottom (i.e., organic) phase was transferred to a new
tube for lipidomics analysis and then dried under N2 flow. Analyses
were performed using a Vanquish UHPLC coupled online to a Q
Exactive high-resolution mass spectrometer (Thermo Fisher Scien-
tific). Samples (10 μl per injection) were randomized and analyzed
in positive and negative electrospray ionization modes (separate
runs) using a 5-min C18 gradient on a Kinetex C18 column (Phe-
nomenex) as described (70). Data were analyzed using Maven in
conjunction with the Kyoto Encyclopedia of Genes and Genomes
database and an in-house standard library.

JAK inhibition in the Dp16 mouse model of DS
Experiments were approved by the Institutional Animal Care and
Use Committee at the University of Colorado Anschutz Medical
Campus under protocol #00111 and performed in accordance
with National Institutes of Health (NIH) guidelines. The Dp16
strain has been previously described (33). Dp16micewere originally
purchased from the Jackson Laboratory and also gifted by
D. Bianchi’s laboratory (NIH) and then intermixed and maintained
on the C57BL/6J background in specific pathogen–free conditions.
Mice were housed separately by sex in groups of one to five mice per
cage under a 14-hour light:10-hour dark cycle with controlled tem-
perature and 35% humidity and had ad libitum access to food (6%
fat diet) and water. For genotyping, genomic DNA was prepared
from 1 to 2 mm of toe, tail, or ear tissue for automated genotyping
by reverse transcription polymerase chain reaction with specific
probes designed for each gene (Transnetyx). Mice (7 to 11 weeks
old) were randomized into treatment groups and treated with bar-
icitinib (JAKi) (10 mg/kg) or an equivalent volume of 0.5% meth-
ylcellulose vehicle once a day via oral gavage for 17 days. Mice were
euthanized by CO2 asphyxiation and cervical dislocation and then
immediately perfused with 1× PBS using a Perfusion Two Automat-
ed Perfusion Instrument (Leica). The number of animals is as
follows: WT vehicle, n = 2 (2 males), Dp16 vehicle, n = 4 (2 males
and 2 females), and Dp16 JAKi, n = 4 (2males and 2 females). Brain,
heart, liver, and lung tissues were homogenized for 30 s using a
Mini-Beadbeater-24 (BioSpec Products) and frozen at −80°C.
Total RNAwas isolated using the AllPrep Kit (QIAGEN) following
the manufacturer’s instructions. Library preparation was carried
out using a Universal Plus mRNA Kit Poly(A) (Tecan). Paired-
end, 150-bp sequencing was carried out on an Illumina NovaSeq
6000. See below for details on RNA-seq analysis.

Statistical analyses
Data preprocessing, statistical analysis, and plot generation for all
datasets were carried out using R (R 4.0.1/RStudio 2022.02.0/
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Bioconductor 3.11) (71, 72) as detailed below. All figures were as-
sembled in Adobe Illustrator v25.4.5.
Data visualization
For comparison of data distributions between different categories/
groups, sina plots showing all points jittered horizontally by local
density, modified with boxes representing medians and interquar-
tile ranges, were generated using ggplot2 and the geom_sina() func-
tion from the ggforce R package. For comparison of continuous
data, XY scatterplots with points colored by local density were gen-
erated using a custom density function and ggplot2. Heatmaps were
generated using the ComplexHeatmap and tidyheatmap R
packages.
Gene set enrichment analysis
GSEA (73) was carried out in R using the fgsea package (v 1.14.0),
using Hallmark gene sets, and log2-transformed fold changes (for
RNA-seq), log2(fold change) multiplied by −log10(P value) (for SO-
MAscan proteomics), or Spearman rho values (for correlations) as
the ranking metric.
Spearman correlation analysis
Spearman correlation coefficients (rho) and P values were calculat-
ed for the indicated datasets using the rcorr() function from the
Hmisc package (v 4.4-0), with Benjamini-Hochberg adjustment of
P values and an estimated false discovery rate (FDR) threshold (q)
of 0.1.
Analysis of whole-blood RNA-seq data
RNA-seq data yield was ~33 × 106 to 103 × 106 raw reads and ~21 ×
106 to 69 × 106 final mapped reads per sample. Data quality was
assessed using FASTQC (v0.11.5) and FastQ Screen (v0.11.0). Trim-
ming and filtering of low-quality reads was performed using bbduk
from BBTools (v37.99) and fastq-mcf from ea-utils (v1.05). Align-
ment to the human reference genome (GRCh38) was carried out
using HISAT2 (v2.1.0) in paired, spliced-alignment mode against
a GRCh38 index and Gencode v33 basic annotation GTF, and align-
ments were sorted and filtered for mapping quality (MAPQ > 10)
using Samtools (v1.5). Gene-level count data were quantified using
HTSeq-count (v0.6.1) with the following options (--stranded=re-
verse –minaqual=10 –type=exon --mode=intersection-nonempty)
using a Gencode v33 GTF annotation file. Differential gene expres-
sion in T21 versus D21 was evaluated using DESeq2 (version 1.28.1)
(74), with q < 0.1 (10% FDR) as the threshold for differential
expression.
DS IFN scores. To capture the degree of IFN signaling in each

sample as a single value, we calculated RNA-seq–based DS IFN
scores as follows: First, gene-wise z scores were calculated from
age- and sex-adjusted reads-per-kilobase-per-million (RPKM)
values for each sample, based on the mean and SD of the euploid
control samples. Second, sample-wise DS IFN scores were calculat-
ed as the sum of z scores for ISGs, with significant mean fold change
of at least 1.5 in the T21 group versus the euploid control group,
excluding IFNAR2, MX1, and MX2, which are encoded on chr21.
This led to a list of 18 genes shown in fig. S2D.
Analysis of SOMAscan proteomics data
Normalized data (RFU) in the SOMAscan adat file format were im-
ported to R using the SomaDataIO R package (v3.1.0). Extreme out-
liers were classified per karyotype and per analyte as measurements
more than three times the interquartile range (IQR) below or above
the first and third quartiles, respectively (below Q1 − 3 × IQR or
above Q3 + 3 × IQR), and excluded from further analysis. Differen-
tial abundance analysis for SOMAscan proteomics was performed

using linear regression in R with log2-transformed relative abun-
dance as the outcome/dependent variable; T21 status as the predic-
tor/independent variable; and age, sex, and sample source as
covariates. Multiple hypothesis correction was performed with the
Benjamini-Hochberg method using an FDR threshold of 10% (q <
0.1). Before visualization or correlation analysis, SOMAscan data
were adjusted for age, sex, and sample source using the remove-
BatchEffect() function from the limma package (v3.44.3).
Analysis of MSD inflammatory marker data
Plasma concentration values (pg/ml) for each of the cytokines and
related immune factors measured across multiple MSD assay plates
were imported to R and combined, and analytes with >10% of
values outside of detection or fit curve range were flagged. For
each analyte, missing values were replaced with either the
minimum (if below fit curve range) or maximum (if above fit
curve range) calculated concentration per plate/batch and means
of duplicate wells used for subsequent analysis. Extreme outliers
were classified per karyotype and per analyte as measurements
more than three times the interquartile range below or above the
first and third quartiles, respectively, and excluded from further
analysis. Differential abundance analysis for inflammatory
markers measured by MSD was performed using mixed effects
linear regression as implemented in the lmer() function from the
lmerTest R package (v3.1-2), with log2-transformed concentration
as the outcome/dependent variable, T21 status as the predictor/in-
dependent variable, age and sex as fixed covariates, and sample
source as a random effect. Multiple hypothesis correction was per-
formed with the Benjamini-Hochberg method using an FDR
threshold of 10% (q < 0.1). Before visualization or correlation anal-
ysis, MSD data were adjusted for age, sex, and sample source using
the removeBatchEffect() function from the limma
package (v3.44.3).
Consensus clustering. For the consensus cluster described in

Fig. 2, z scores were calculated from plasma concentration values
(picograms per milliliter) for each of the inflammatory markers
for samples from individuals with T21 and used as input to the Con-
sensusClusterPlus() function from the ConsensusClusterPlus
package with 100-fold subsampling, Pearson as the distance
measure, and agglomerative hierarchical clustering. Examination
of the delta area plot indicated five clusters that gave a reasonable
compromise between gains in cluster stability and number of clus-
ters. The Mann-Whitney U test was used to test for differences in
the distributions of DS IFN scores and other features for each cluster
in comparison to cluster 1, using the wilcox_test() function from
the rstatix package. Correction for multiple comparisons was per-
formed using the Benjamini-Hochberg (FDR) approach.
Analysis of mass cytometry data
Preprocessing. Bead-based normalization via polystyrene beads

embedded with lanthanides, both within and between batches, fol-
lowed by bead removal was carried out as previously described
using the Matlab-based Normalizer tool (75). Batched FCS files
were demultiplexed using the Matlab-based Single Cell Debarcoder
tool (76). Reference-based normalization of individual samples
across batches against the common reference sample was then
carried out using the R script BatchAdjust(). Last, for the analyses
described here, CD3+CD19+ doublets were excluded, and Boolean
gating for hematopoietic lineage (CD45-positive), non-granulocytic
(CD66-low) cells was performed in CellEngine (CellCarta) and FCS
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files subsampled to 10,000 events per sample before export for sub-
sequent analysis.
Unsupervised clustering. All 388 FCS files were imported into R as

a flowSet object using the read.flowSet() function from the flowCore
package (77). Next a SingleCellExperiment object was constructed
from the flowSet object using the prepData() function from the
CATALYST package (78), applying Arcsinh transformation with a
cofactor of 5. Quality control and diagnostic plots were examined
with the help of functions from the CATALYST and tidySingleCel-
lExperiment packages.

Unsupervised clustering using the FlowSOM algorithm (79) was
carried out using the cluster() function from the CATALYST
package, with the grid size set to 10 × 10 to give 100 initial clusters,
and a maxK value of up to 40 was explored for the subsequent meta-
clustering. Clustering was rerun with multiple random seed values
to ensure consistent results. Examination of delta area and minimal
spanning tree plots (fig. S5A) indicated 30 meta-clusters that gave a
reasonable compromise between gains in cluster stability and
number of clusters.
Visualization using t-distributed stochastic neighbor embedding.

Dimensionality reduction from 28 cell type markers to two dimen-
sions was carried out using the runDR() function from the
CATALYST package, with 500 cells per sample, and using several
random seed values to ensure consistent results. Multiple values
of the perplexity parameter were tested, with a setting of 440,
using the formula Perplexity ~ N(1/2) as suggested at https://
towardsdatascience.com/how-to-tune-hyperparameters-of-tsne-
7c0596a18868, providing a visualization with good agreement with
the 30 clusters defined by FlowSOM.
Cell type classification. To aid in assignment of clusters to specific

lineages and cell types, the MEM package (marker enrichment
modeling) was used to call positive and negative markers for each
cell cluster based on marker expression distributions across clusters.
Manual review and comparison to marker expression histograms, as
well as minimal spanning tree plots and t-distributed stochastic
neighbor embedding (tSNE) plots colored by marker expression
(e.g., fig. S5A), allowed for high-confidence assignment of most
clusters to specific cell types (fig. S5B). Several clusters that were in-
sufficiently distinguishable were merged into their nearest cluster
based on the minimal spanning tree. Four clusters were excluded
from further analysis (see fig. S5A), three because of low cell
numbers (<0.01%) and one because of positivity for most
markers. Relative frequencies for each cell type/cluster were calcu-
lated for each sample as a percentage of the total CD45+CD66lo
population.
Beta regression analysis. To identify cell clusters for which relative

frequencies are associated with either T21 status or DS IFN scores in
samples from individuals with T21, beta regression analysis was
carried out using the betareg R package (v3.1-4), with each model
using cell type cluster proportions (relative frequency) as the
outcome/dependent variable and either T21 status or DS IFN
score values as the independent/predictor variable, with adjustment
for age and sex, and a logit link function. Extreme outliers were clas-
sified per karyotype and per cluster as measurements more than
three times the interquartile range below or above the first and
third quartiles, respectively (below Q1 − 3 × IQR or above Q3 + 3
× IQR), and excluded from beta regression analysis. Correction for
multiple comparisons was performed using the Benjamini-Hoch-
berg (FDR) approach. Effect sizes (as fold change in T21 versus

control or per unit DS IFN score) for each cell type cluster were ob-
tained by exponentiation of beta regression model coefficients. Fold
changes from each model were visualized by overlaying on tSNE
plots using ggplot2. For visualization of individual examples, data
points were visualized as sina plots (separated by T21 status) or as
XY scatterplots (for comparison to DS IFN scores) with points
colored by local density using a custom function and overlaid
with beta regression fit curves and 95% confidence intervals extract-
ed from model objects using the ggemmeans() function from the
ggeffects package (v1.1.0).
Analysis of plasma metabolomics and lipidomics data
Metabolite peak intensity data were imported to R.Metabolites with
zero values were replaced with a random value sampled from
between 0 and 0.5× the minimum nonzero intensity value for
that metabolite. For downstream analysis, data were then normal-
ized using a scaling factor derived by dividing the global median
intensity value across all metabolites by each sample median inten-
sity. Median normalization was chosen as it is simple to use, relies
on few assumptions, and performs on par with more complex nor-
malization techniques, such as linear regression, local regression,
total intensity, average intensity, and quantile normalization, in re-
ducing intragroup variation, and is one of the non–reference-based
normalization methods used in thewidely usedMetaboAnalyst pre-
processing module (80).

Extreme outliers were classified per karyotype and per analyte as
measurements more than three times the interquartile range below
or above the first and third quartiles, respectively, and excluded
from further analysis. Differential abundance analysis for metabo-
lites was performed using linear regression in R with log2-trans-
formed relative abundance as the outcome/dependent variable;
T21 status as the predictor/independent variable; and age, sex,
and sample source as covariates. Multiple hypothesis correction
was performed with the Benjamini-Hochberg method using an
FDR threshold of 10% (q < 0.1). Before visualization or correlation
analysis, metabolite data were adjusted for age, sex, and sample
source using the removeBatchEffect() function from the limma
package (v3.44.3).
Clustering and analysis of co-occurring conditions
Clinical metadata fields, including co-occurring conditions and past
diagnoses, for individuals with T21 were filtered for conditions with
at least 10 cases and controls and combined with matching DS IFN
scores, resulting in 88 conditions eligible for clustering analysis.
Pairwise sample-sample distances for this mixed data were then cal-
culated using the Gower method as implemented in the daisy()
function from the cluster package (v2.1.0). The resulting distance
matrix was used as input for clustering using the PAM algorithm
available in the pam() function, also from the cluster package. Sil-
houette width, a measure of measure of how similar an observation
(here individual participant) is to its own cluster compared to other
clusters, was then evaluated across a range of k values, with k = 2
clusters producing the highest average silhouette width. To visually
compare occurrence of co-occurring conditions across the two clus-
ters, the number of observed cases per cluster for each condition was
divided by the expected number of cases (i.e., equal occurrence rates
in each cluster) to give an observed/expected ratio that was plotted
as a heatmap using the tidyHeatmap package.

Fisher’s exact test was used to test for unequal occurrence of each
condition across clusters, using the tabyl() and fisher.test() func-
tions from the janitor package (v2.0.1). The Mann-Whitney U
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test was used to test for differences in the distributions of DS IFN
scores across clusters or between cases and controls, using the wil-
cox_test() function from the rstatix package. Correction for multi-
ple comparisons was performed using the Benjamini-Hochberg
(FDR) approach.
Longitudinal case study of tofacitinib treatment
A research participant in the HTP biobank received intermittent
treatment with tofacitinib (Xeljanz; 5 mg of doses, once to twice a
day) for alopecia areata with remarkable hair regrowth while on the
medicine (32). Over the course of ~3 years, the participant provided
research blood draws when on the medicine and during periods of
voluntary treatment interruption. Blood draws were processed as
described above for whole blood transcriptome and SOMAscan
proteomics. RNA-seq and SOMAscan data were processed and an-
alyzed as described above.
RNA-seq of murine tissues
Reads were demultiplexed and converted to FASTQ format using
bcl2fastq v2.20.0.422. Data quality was assessed using FASTQC
v0.11.5 and FastQ Screen v0.11.0. Filtering of low-quality reads
was performed using bbduk from BBTools v37.99 and fastq-mcf
from ea-utils v1.05. Alignment to the mouse GRCm38 reference
genome index and Gencode M24 annotation GTF was carried out
using HISAT2 v2.1.0. Alignments were sorted and filtered for
mapping quality (MAPQ > 10) using SAMtools v1.5. Gene-level
count data were quantified using HTSeq-count v0.6.1. RNA-seq
data yield was a minimum of ~30 million raw reads. Differential
gene expression was evaluated using DESeq2 v1.28.1 (74) with sur-
rogate variables, determined using the svaseq() function from the
sva package (version 3.46.0), as covariates to remove unwanted
sources of variation, including sex and batch. Significance was set
at q < 0.1 (10% FDR). GSEA (73) was carried out in R using the
fgsea package (v 1.14.0), using Hallmark gene sets on a ranked list
of log2-transformed fold changes.
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