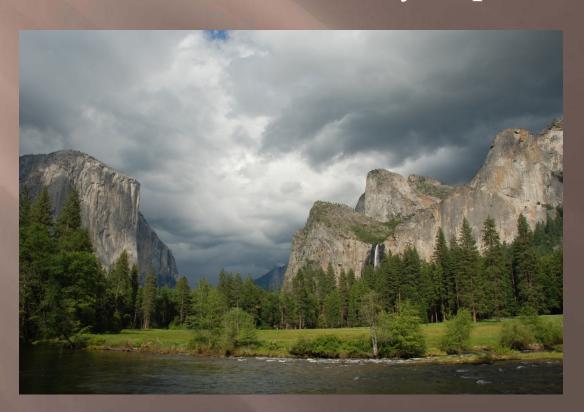
OPTIMAL NUTRITIONAL SUPPORT

Standard Enteral Diet


Seth TeBockhorst

Background / Conceptual Framework

- The advent of 'nutrional pharmacology'
- "Immune enhancing" diets
- The concept of conditionally essential nutrients and associated immune function

Question:

Compared to standard enteral feeds, do "immune-enhancing" diets result in improved clinical outcomes in critically ill patients?

The Data

- Glutamine
- Fish Oils
- Arginine

Glutamine

- Theoretical mechanism: improved gut barrier function and hepatic protein synthesis through the induction of heat shock proteins
- Observation that glutamine may decrease hospital length of stay and infection rate.

Glutamine

- All trials which include mortality are single center trials
- Largest single trial showed no difference in mortality, LOS, or infections.
- A prospective randomized trial of enteral glutamine in critical illness (Hall 2003):

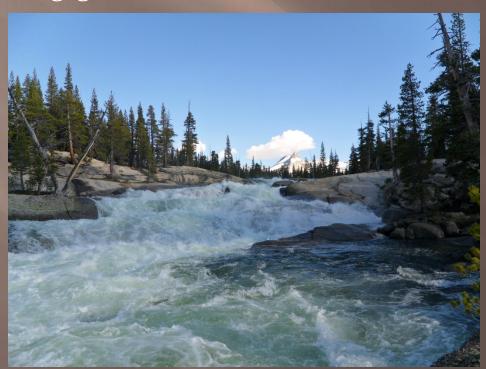
Population	Methods	Diet	Mortality # (%)		Infections # (%)		Hospital Stay days	
			Experimental	Control	Experimental	Control	Experimental	Control
Mixed ICU N = 363 (154 trauma)	Randomized Controlled Double Blind	Isocal + glutamine vs. Isocal	27/179 (15)	30/184 (16)	38/179 (21)	43/184 (23)	25	30

Glutamine

Study	Population	Methods	Diet	Mortality # (%)		Hospital Stay days	
			Diet	Experimental	Control	Experimental	Control
Houdijk 1998	Trauma N = 80	Randomized, Controlled, Double Blind	Altira Q (glutamine enriched formula) vs. isonitrogenous control (added amino acids)	4/41 (9.8)	3/39 (7.7)	32.7	33
Jones 1999	Mixed ICU N = 78	Randomized, Controlled, Double Blind	Protina MP + Glutamine vs. Isonitrogenous Control	10/26 (38.5)	9/24 (37.5)	11 (ICU)	16.5 (ICU)
Brantley 2000	Trauma N = 72	Random: ? Not Blinded	Glutamine supplemented Enteral formula vs. standard formula (Isonitrogenous)	0/31 (0.0)	0/41 (0.0)	19.5	20.8

Fish Oil

- Theoretical mechanism:
 - fish oil supplies ω -3 fatty acids which influence lipid-bound second messenger functions and are a source for resolvins.
 - Sepsis increases the relative oxidation of lipids



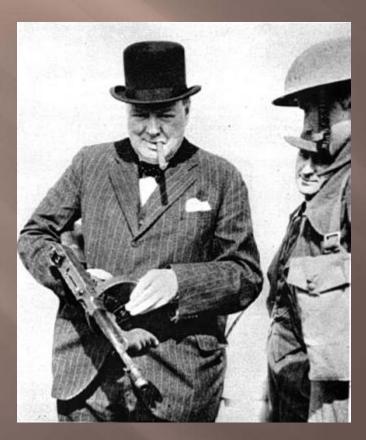
Fish Oil

Study Populati	Dogulation	oulation Methods	Intermention	Mortality # (%)		Infections # (%)	
	ropulation		Intervention	Fish oil	Control	Fish oil	Control
Pontes- Arruda 2006	Septic pts with ALI from 3 ICUs (same hospital) N =165	Randomized, Controlled, Blinded	Oxepa vs standard high fat, low CHO (Pulmocare)	28 day 26/83 (31)	28 day 38/82 (46)	NR	NR
Moran 2006	Septic pts from 20 ICUs N = 198	Not blinded, ? Random	Fish oil, borage oil + antioxidants vs. isocaloric, isonitrogenous, high protein formula	28 day 11/61 (18)	28 day 11/71 (16)	32/61 (53)	34/71 (48)
Galban 2006	Septic pts from 6 ICUs N = 176	Randomized Controlled, Not Blinded	Impact vs Precitene Hiperporteico	17/89 (19.1)	28/87 (32.2)	46/89 (52)	68/87 (78)

Arginine

- Theoretical mechanism:
 - Improving immune function through enhanced responsiveness of T lymphocytes
 - Stimulating growth hormone and insulin secretion

Arginine


Ch. J.	D. L.C.	Mathada	Intomontion	Mortality # (%)		Infections # (%)	
Study	Population	Methods	Intervention	Exper	Control	Exper	Control
Moore 1994	Trauma pts from 5 ICUs N=98	Random: ? Blinded: No	Immun-Aid vs. Vivonex TEN	1/51 (2)	2/47 (4)	9/51 (18)	10/47 (21)
Bower 1995	Mixed from 8 ICUs N=296	Randomized Controlled Blinded	Impact vs. Osmolite	24/153 (16)	12/143 (8)	86/153 (56)	90/143 (63)
Atkinson 1998	Mixed ICU N=390	Random: no Blinded: Yes	Impact vs. specially prepared	95/197 (48)	85/193 (44)	NR	NR
Capparos 2001	Mixed ICU patients from 15 ICUs N=235	Randomized Controlled Blinded	Specially prepared vs control	27/130 (21)	30/105 (29)	64/130 (49)	37/105 (35)
Conejero 2002	SIRS patients from 11 ICUs N = 84	Randomized Controlled Blinded	Specially prepared vs control	28 day 14/43 (33)	28 day 9/33 (27)	11/43 (26)	17/33 (52)
Dent 2003	N=170 Mixed from 14 ICUs	Randomized Controlled Blinded	Optimental vs. Osmolite HN	20/87 (23)	8/83 (10)	57/87 (66)	52/83 (63)
Kieft 2005	Mixed ICU pts from 2 ICUs N = 597	Randomized Controlled Blinded	Stresson vs.standard	114/302 (38)	106/295 (36)	130/302 (43)	123/295 (42)

A Word on Cost

- Reducing Costs and Patient Morbidity in the Enterally Fed Intensive Care Unit Patient (Farber, 2005):
 - Impact 1.5 \$49/day (\$686 for 2 weeks)
 - Standard enteral formula \$4.25/day (\$60 for 2 weeks)
- Preoperative Immunonutrition: Cost-Benefit Analysis (Braga, 2005):
 - "the perioperative group had an additional cost of € 209 (\$273) per patient because of postoperative immunonutrition, without showing any additional clinical benefit."

Conclusions

"However beautiful the strategy, you should occasionally look at the results."

Cited References

Glutamine:

Brantley S, Pierce J: Effects of enteral glutamine on trauma patients. Nutrition in Clinical Practice 2000; 15, S13.

■ Hall JC, Dobb G, Hall J, De Sousa R, Brennan L, McCauley R. A prospective randomized trial of enteral glutamine in critical illness. Intensive Care Med. 2003 Oct;29(10):1710-6.

EHoudijk AP, Rijnsburger ER, Jansen J, Wesdorp RI, Weiss JK, McCamish MA, Teerlink T, Meuwissen SG, Haarman HJ, Thijs LG, van Leeuwen PA. Randomised trial of glutamine-enriched enteral nutrition on infectious morbidity in patients with multiple trauma. Lancet. 1998 Sep 5;352(9130):772-6.

■Jones C, Palmer TE, Griffiths RD. Randomized clinical outcome study of critically ill patients given glutamine-supplemented enteral nutrition. Nutrition. 1999 Feb;15(2):108-15.

Arginine

■Moore FA, Moore EE, Kudsk KA, Brown RO, Bower RH, Koruda MJ, Baker CC, Barbul A. Clinical benefits of an immune-enhancing diet for early postinjury enteral feeding. J Trauma. 1994 Oct;37(4):607-15.

■Bower RH, Cerra FB, Bershadsky B, Licari JJ, Hoyt DB, Jensen GL, Van Buren CT, Rothkopf MM, Daly JM, Adelsberg BR. Early enteral administration of a formula (Impact) supplemented with arginine, nucleotides, and fish oil in intensive care unit patients: results of a multicenter, prospective, randomized, clinical trial. Crit Care Med. 1995 Mar;23(3):436-49

■ Atkinson S, Sieffert E, Bihari D. A prospective, randomized, double-blind, controlled clinical trial of enteral immunonutrition in the critically ill. Guy's Hospital Intensive Care Group. Crit Care Med. 1998 Jul; 26(7):1164-72.

□Caparros T, Lopez J, Grau T. Early enteral nutrition in critically ill patients with a high-protein diet enriched with arginine, fiber, and antioxidants compared with a standard high-protein diet. The effect on nosocomial infections and outcome. J Parenter Enteral Nutr. 2001 Nov-Dec;25(6):299-308

©Conejero R, Bonet A, Grau T, Esteban A, Mesejo A, Montejo JC, Lopez J, Acosta JA. Effect of a glutamine-enriched enteral diet on intestinal permeability and infectious morbidity at 28 days in critically ill patients with systemic inflammatory response syndrome: a randomized, single-blind, prospective, multicenter study. Nutrition. 2002 Sep;18(9):716-21.

■Dent D, Heyland DK, et al. Increased mortality in patients with pneumonia receiving an immune-enhancing diet. Crit Care Med 2003 (in press).

■Kieft H, Roos A, Bindels A et al. Clinical Outcome of an Immune Enhancing Diet in a Heterogenous Intensive Care population. Intensive Care Medicine 2005, 31:524.

Cited References

Fish Oils:

■Moran V, Grau T, de Lorenzo AC, Lopez J, Gonzalez C, Montejo JC, Blesa A, Albert I, Bonet A, Herrero I. Effect of an enteral feeding with eicosapentaenoic and gamma-linoleic acids on the outcome of mechanically ventilated critically ill septic patients. Crit Care Med 2006 Dec;34(12 Abstract supplement):A70

■Pontes-Arruda A, Aragao AM, Albuquerque JD. Effects of enteral feeding with eicosapentaenoic acid, gamma-linolenic acid, and antioxidants in mechanically ventilated patients with severe sepsis and septic shock. Crit Care Med. 2006 Sep;34(9):2325-33.

□Galban, C., J. C. Montejo, et al. An immune-enhancing enteral diet reduces mortality rate and episodes of bacteremia in septic intensive care unit patients. Crit Care Med 28(3): 643-648.

Cost:

Reducing costs and patient morbidity in the enterally fed intensive care unit patient. Farber MS, Moses J, Korn M. JPEN J Parenter Enteral Nutr. 2005 Jan-Feb;29(1 Suppl):S62-9.

□Preoperative immunonutrition: cost-benefit analysis. Braga M, Gianotti L. JPEN J Parenter Enteral Nutr. 2005 Jan-Feb;29(1 Suppl):S57-61