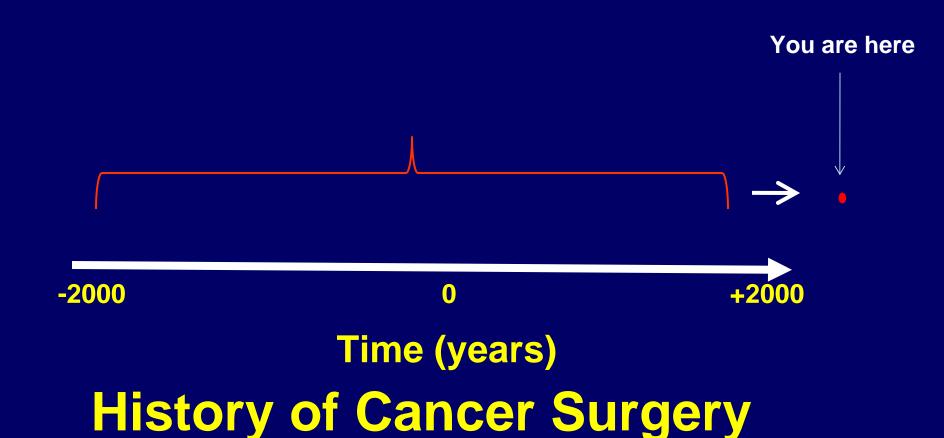
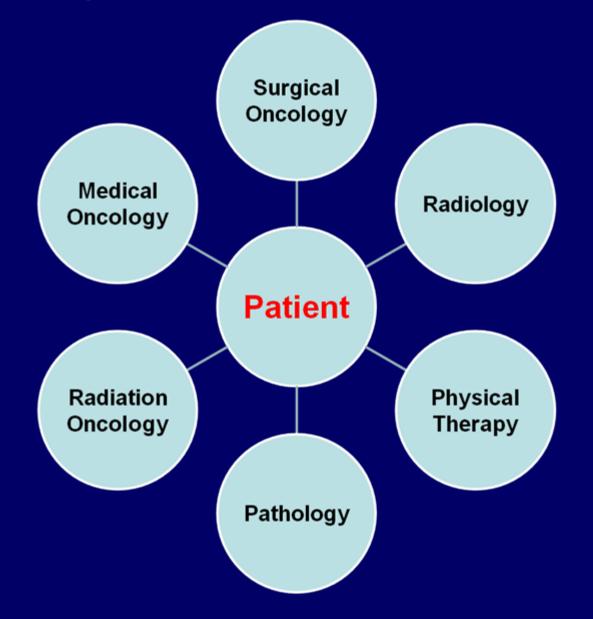

Principles of Cancer Surgery in the Molecular Age



Surgery Grand Rounds November 15, 2010

Martin McCarter, M.D. Associate Professor of Surgery GI Tumor & Endocrine Surgery University of Colorado Denver

Outline of Today's Presentation



Principles of Cancer Surgery

Outline

- The cancer problem
- Tumor staging
- Statistics and prediction tools
- Tumor biology
- Cancer molecules
- Things that make you say huh?
- New therapies for cancer patients

Integrating a Multidisciplinary Approach

Magnitude of the Problem

Leading Sites of New Cancer Cases and Deaths – 2009 Estimates

Estimated New Cases*		Estimated Deaths			
Male	Female	Male	Female		
Prostate	Breast	Lung & bronchus	Lung & bronchus		
192,280 (25%)	192,370 (27%)	88,900 (30%)	70,490 (26%)		
Lung & bronchus	Lung & bronchus	Prostate	Breast		
116,090 (15%)	103,350 (14%)	27,360 (9%)	40,170 (15%)		
Colon & rectum	Colon & rectum	Colon & rectum	Colon & rectum		
75,590 (10%)	71,380 (10%)	25,240 (9%)	24,680 (9%)		
Urinary bladder	Uterine corpus	Pancreas	Pancreas		
52,810 (7%)	42,160 (6%)	18,030 (6%)	17,210 (6%)		
Melanoma of the skin	Non-Hodgkin lymphoma	Leukemia	Ovary		
39,080 (5%)	29,990 (4%)	12,590 (4%)	14,600 (5%)		
Non-Hodgkin lymphoma	Melanoma of the skin	Liver & intrahepatic bile duct	Non-Hodgkin lymphoma		
35,990 (5%)	29,640 (4%)	12,090 (4%)	9,670 (4%)		
Kidney & renal pelvis	Thyroid	Esophagus	Leukemia		
35,430 (5%)	27,200 (4%)	11,490 (4%)	9,280 (3%)		
Leukemia	Kidney & renal pelvis	Urinary bladder	Uterine corpus		
25,630 (3%)	22,330 (3%)	10,180 (3%)	7,780 (3%)		
Oral cavity & pharynx	Ovary	Non-Hodgkin lymphoma	Liver & intrahepatic bile duct		
25,240 (3%)	21,550 (3%)	9,830 (3%)	6,070 (2%)		
Pancreas	Pancreas	Kidney & renal pelvis	Brain & other nervous system		
21,050 (3%)	21,420 (3%)	8,160 (3%)	5,590 (2%)		
All sites	All sites	All sites	All sites		
766,130(100%)	713,220 (100%)	292,540 (100%)	269,800 (100%)		

^{*}Excludes basal and squamous cell skin cancers and in situ carcinoma except urinary bladder.

@2009, American Cancer Society, Inc., Surveillance and Health Policy Research

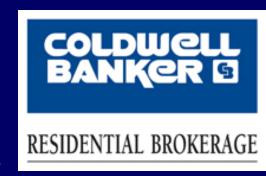
Staging is All About Real Estate*

The purpose of staging is to provide estimates of expected outcomes

- Facilitates treatment planning
- Allow comparisons between treatment groups

American Joint Commission on Cancer (AJCC)

T = Tumor (size, grade) N = Nodes (number) M = Metastasis


General Classification

Stage I - Superficial early cancer

Stage II - Locally advanced - nodes

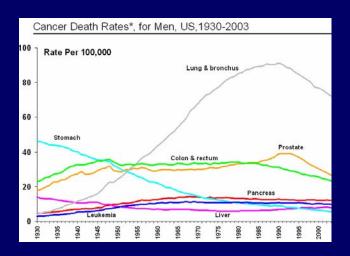
Stage III - Regionally advanced + nodes

Stage IV - Metastatic beyond regional nodes

^{*} The future of staging will lie in the molecular profile of tumor and host

Staging and Estimated 5 year Survival Rates at Diagnosis

Advantages

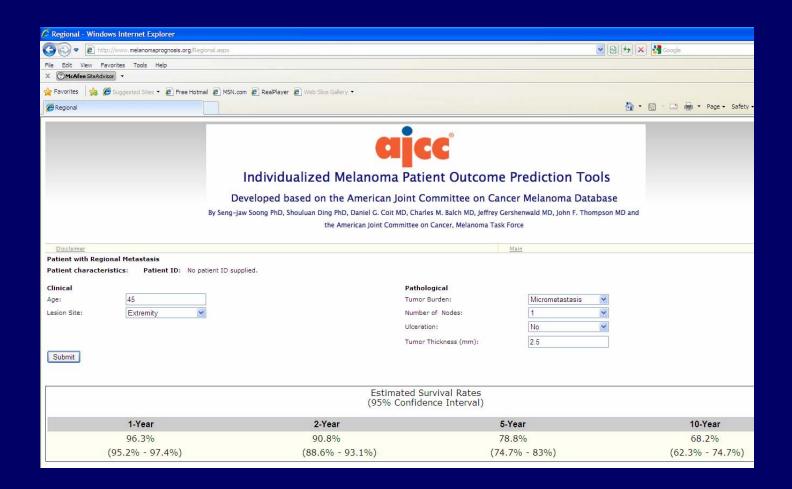

- Each revision provides more accurate prognosis
- Allows for general estimates of survival

Disadvantages

- Each revision more complex
- Stage shifting over time
- Still lumping cancers by relatively crude descriptive characteristics

Five-year Relative Survival Rates* (%) by Stage at Diagnosis, 1996-2004									
Site	All Stages	Local	Regional	Distant	Site	All Stages	Local	Regional	Distant
Breast (female)	88.7	98.1	83.8	27.1	Ovary	45.5	92.7	71.1	30.6
Colon & rectum	64.4	89.7	68.4	10.8	Pancreas	5.1	20.0	8.2	1.8
Esophagus	15.8	34.4	17.1	2.8	Prostate⁵	98.9	100.0	_	31.7
Kidney [†]	66.5	89.9	61.3	9.9	Stomach	24.7	60.7	24.8	3.7
Larynx	62.5	80.9	50.2	23.4	Testis	95.5	99.3	95.7	71.1
Liver*	11.7	23.8	7.7	2.9	Thyroid	96.9	99.7	96.9	57.8
Lung & bronchus	15.2	49.5	20.6	2.8	Urinary bladder	79.8	92.5	44.7	6.1
Melanoma of the skin	91.2	98.7	65.1	15.5	Uterine cervix	71.2	91.7	55.9	16.6
Oral cavity & pharynx	59.7	82.2	52.7	28.4	Uterine corpus	82.9	95.5	67.5	23.6

Statistics for Cancer Patients


- Median follow-up and survival
- Overall survival
- Relative differences vs. absolute differences
- Disease specific survival
- Disease free survival (recurrence free)
- Progression free survival

Concept of Relative Conditional Survival

The probability of a cancer patient, who is alive 5 years after the original diagnosis, going on to survive another 5 years.

- ~ 90% for local disease
- ~ 85% for regional disease
- ~ 70% for distant disease

Prediction Tools - Melanoma

Prediction Tools

Age Patient's age at the time of the surgery	65 years old (20 to 1
Sex	Male
Location Where in the colon is the tumor? This tool is only for tumors found in the colon — between the pouch that forms the first part of the large intestine (known as the cecum) and the S-shaped section of the colon that connects to the rectum (the rectosigmoid, or sigmoid, colon).	Right
CEA (colorectal biomarker) CEA value from the laboratory report before surgery.	10 (0 to 64)
Tumor Stage Based upon the TNM staging system.	T3 ×
Differentiation Select whether <u>tumor</u> is poor, moderate, or well differentiated.	Moderate
Lymphatic or Vascular Structure Involvement (LymphovascularInvasion) Was one or more tumor cells found in the lymphatic or vascular structure?	✓YES
Perineural Invasion (PerineuralInvasion) Was one or more tumor cells found in or around the nerves?	□YES
Number of Positive Lymph Nodes	1 (0 to 24)
Number of Negative Lymph Nodes	15 (0 to 42)
Chemotherapy After Surgery Treated with chemotherapy after surgery?	∀ YES

Cancer Speak

Terms you have heard but may not know

- Tumor = abnormal growth
- Cancer = tumor that has the capacity to metastasize
- Adjuvant therapy = chemo or radiation therapy added after surgery
- Neoadjuvant therapy = chemo or radiation therapy given before planned definitive surgery
- R0 = complete margin negative resection
- R1 = complete gross resection, microscopically positive margin
- R2 = gross disease left behind

Classes of Tumors

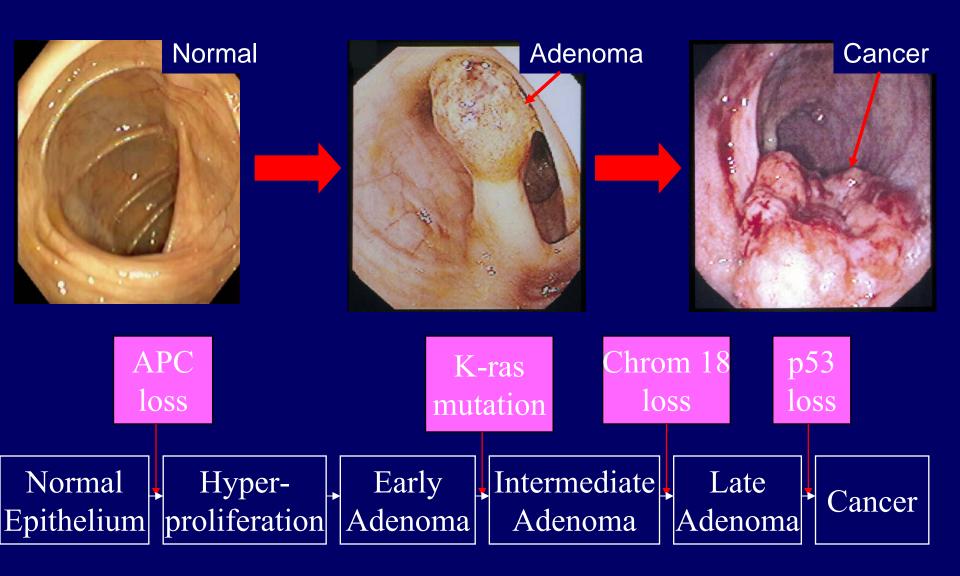
General Groupings

Carcinoma = Epithelial tumors

- breast, melanoma, GI, GU, lung, GYN, H&N
- invade lymphatic and vascular structures

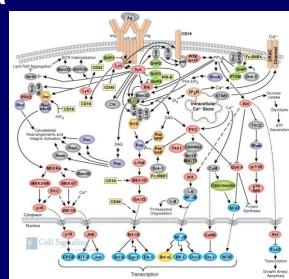
Sarcoma = Connective tissue tumors

- displace other structures
- hematogenous spread

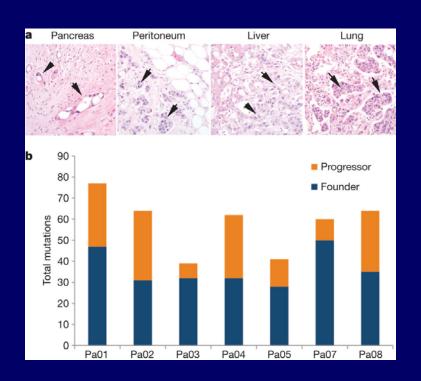

Ovarian

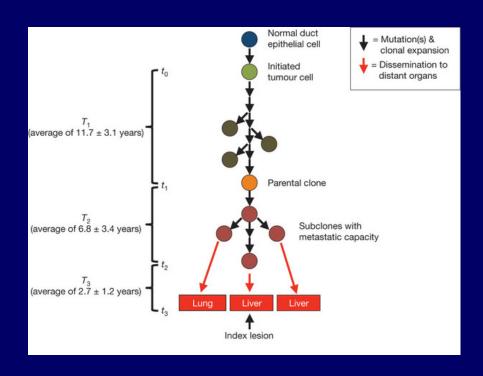
Testicular

Carcinoid tumors = "carcinoma like"


Liquid tumors = leukemia and lymphoma

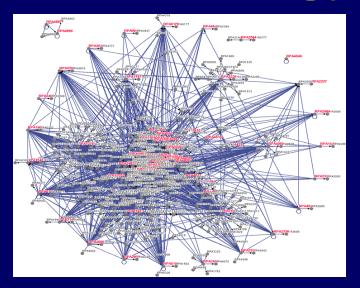
Tumor Biology


What Does it Take to Make a Tumor?


- All tumors have multiple mutations
- Estimated to take at least 10 years from forming a cancer cell to metastasis
- Some mutations are critical for abnormal growth
 - Leukemia BCR-ABL
 - GIST cKit
- For most tumors, we haven't found a dominant mutation
- Most mutations are believed to be "passengers"

What Does it Take to Make a Tumor?

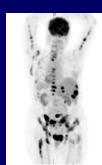
- Sequenced the genome of 7 pancreatic tumors and their metastasis
- Classified as Founder and Progressor mutations
- Created evolutionary map


Epithelial to Mesenchymal Transformation (EMT)

Ponder this:

- Much of any tumor mass is stroma (i.e. not cancer epithelium)
 - Fibroblasts, extracellular matrix, myofibroblasts, blood vessels, immune cells
- In tumor xenograft models (human tumor grown in immune deficient mice)
 - Much of the stroma is of mouse origin
- In bone marrow transplant patients who receive bone marrow from the opposite sex and develop CR, Breast, or Gastric cancer
 - Tumor cells are from the host
 - Stroma cells are from the donor!

McAllister SS, Weinberg RA. Tumor-host interactions: a far-reaching relationship. J Clin Oncol. 2010 Sep 10;28(26):4022-8. Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition J Clin Invest. 2009 Jun;119(6):1420-8


Tumor Biology

Understanding tumor biology is critical for:

- deciding when to operate
- deciding what operation to do
- deciding when NOT to operate

Biology of Cancer Recurrence some general rules of thumb

Recurrence of tumor

- Tumor environment is a wound that doesn't heal
- ~75% of recurrences occur within the first 2 years of surgery
- 5 year mark for "cure" is arbitrary
- One third local recurrence alone
- One third local plus distant simultaneously
- One third distant alone

Surgery as Curative

- To cure a patient with surgery is still relatively rare
- Some percentage (one third?) may be cured
- Earlier detection is best chance for cure
- Clarify the goal of your operation (curative, debulking, palliative, preventative)

Surgery as Preventative

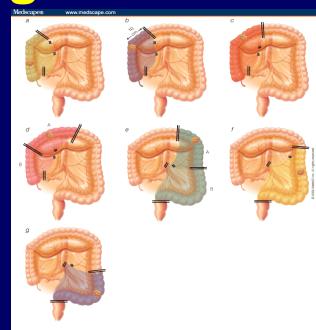
Prophylactic surgery to prevent cancer development

Disease	Marker	Treatment
FAP	APC	Colectomy
MEN 2	RET	Throidectomy
Familial Breast Cancer	BRCA 1,2	Mastectomy
Familial Ovarian Cancer	?	Oophorectomy

Principles of Surgery for Local Control

- Local control should be a top priority
- First operation is best chance for control
- Apply basic surgical fundamentals to reduce local recurrences
- Salvage surgery to achieve local control is problematic at best

Principles of Biopsies

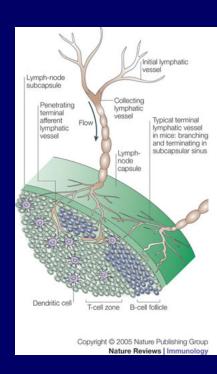

To biopsy or not to biopsy, that is the question?

Answer:

- Know your tumor biology
- Will it change treatment plan?
- Will biopsy cause tumor spread?
- Biopsy options
 - Aspiration, Core, Incisional, Excisional
- Avoid hematoma
- Plan to excise needle or biopsy site

Principles of Margins

- Factor in tumor biology
- Factor in location
- Factor in other treatments
- In general 1cm gross margin is minimum necessary
- Wider margin preferable if it can be done with minimal additional morbidity
- Goal of margin is reduced local recurrence



Principles of Lymph Nodes

Function of lymph nodes

- Primarily for antigen recognition
- Not a filter
- Majority of tumor cells pass through
- Rare tumor cells can grow in lymph nodes
- Lymph nodes are indicators not governors of survival
- Therefore the assessment of lymph nodes is a prognostic tool

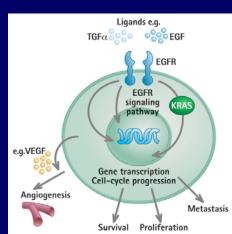
(that will one day be supplanted by molecular tools)

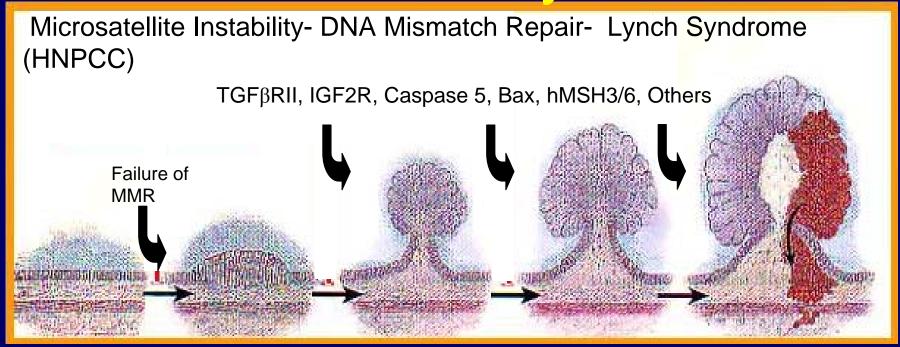
Principles of Palliative Surgery

- One cannot palliate asymptomatic cancer patients
- Address the highest priority symptom first
- Manage expectations
- 25% will fail immediately
- 25% will recur with same symptom

Future of Surgical Oncology "Targeted Therapy"

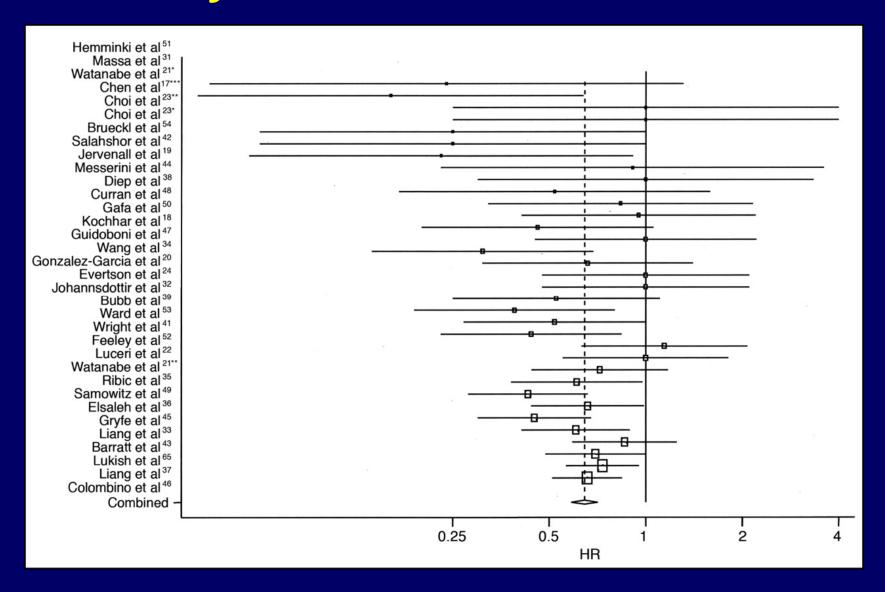
The paradigm of Gastrointestinal Stromal Tumors (GIST)

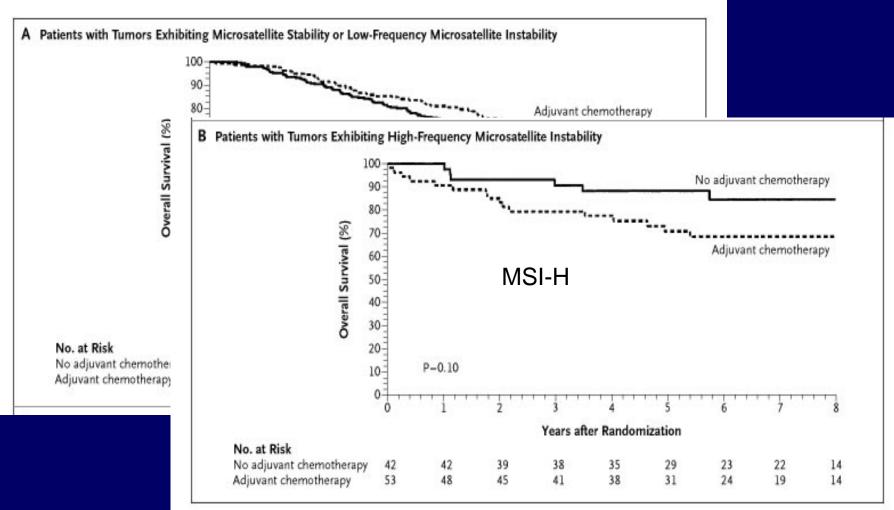

- cKIT mutation (tyrosine kinase) identified as the activating growth signal
- Imatinib (Gleevec) developed as an oral agent to block the activating mutation (ATP binding site)
- Indicated in metastatic and high risk resected GIST
- Changed the natural history of this disease


Future of Surgical Oncology "Personalized Therapy"

Example of Tumor KRAS Status in Colorectal Cancer

- Cetuximab (Erbitux) and panitumumab (Vectibix) are monoclonal antibodies directed at the epidermal growth-factor receptor
- Approved for treating metastatic colorectal cancer
- Tumors with a mutation in KRAS (downstream of EGRF) do not respond to EGFR receptor blockade
- Tumor analysis now required to treat with these agents

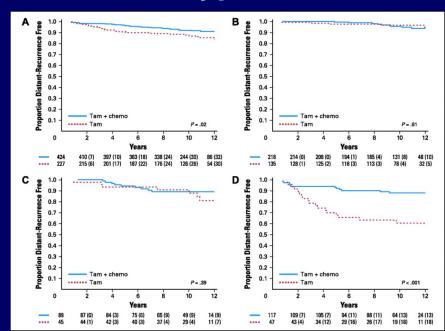

Microsatellite Instability Pathway


Normal Epithelium Abnormal Epithelium

Early Adenoma Advanced Adenoma Adenocarcinoma
Diploid
Characteristic
Histology
Microsatellite Unstable

Meta analysis of Death- MSI-H vs. MSS

Microsatellite Unstable CRCs May Not Respond to Adjuvant Chemotherapy

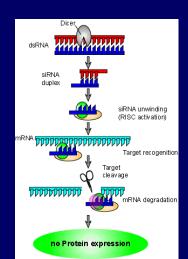


Molecular Diagnostics

Oncotype Dx for Breast Cancer

- 21 Gene PCR on fixed tissue
- Quantifies the likelihood of disease recurrence in early-stage breast cancer
- Assesses the likely benefit from certain types of

chemotherapy



Future of Surgical Oncology Biomarkers

Biomarkers are tumor or circulating molecules that help detect and monitor certain cancers

- CEA, CA19-9, PSA, CA27-29
- Proteomic analysis
- microRNA or small interfering RNA (siRNA) analysis
- Breath analysis

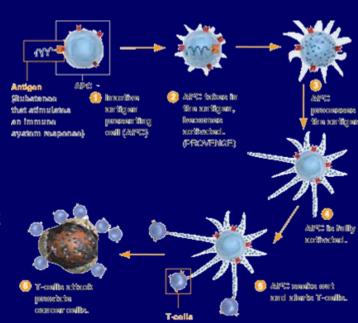
Issues of Molecular Marker Detection

Immunohistochemical (IHC) = antibody based assessment

- Quick and easily adopted by most labs
- Strength of staining graded by the pathologist
- Examples- Breast ER/PR, HER2/neu, and GIST CD117

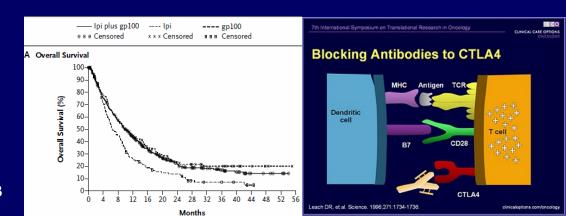
Polymerase Chain Reaction (PCR) = Gene or mutation present

- Certified lab
- Takes days to weeks for results
- Examples Colon cancer KRAS, Melanoma BRAF


New Immune Therapies

Sipuleucel-T (Provenge)

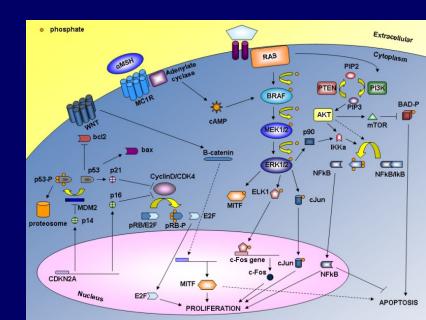
- FDA approved April 2010 for hormone resistant metastatic prostate cancer
- First therapeutic cancer vaccine to improve overall survival in Phase III trials


• Improved median survival from 21 to 25 months (\$93,000)

- Extract antigen presenting cells (dendritic cells) from patient
- Mix with prostatic acid phosphatase (PAP)
- Stimulate with GM-CSF
- Re-infuse to patient three times, two weeks apart

New Immune TherapiesAnti CTLA-4 antibody (Ipilimumab)

- Cytotoxic T-lymphocyte—associated antigen 4 (CTLA-4) is an immune checkpoint molecule that down-regulates pathways of T-cell activation
- HLA-A2 patients with metastatic disease progressing on therapy
- Randomized to Ipilimumab +/- gp100 vaccine
- Improved overall survival from 6 to 10 months
- Autoimmune major toxicity in 10-15%

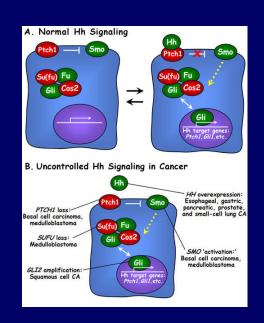

New Targeted Therapies

BRAF inhibitor in Melanoma - PLX4032

- BRAF (V600E) mutation present in about 50% of melanoma
- BRAF mutation activates MAP Kinase pathway
- In phase I trial 26 out of 32 metastatic patients

responded

Phase III trial ongoing



New Targeted Therapies

Hedgehog Pathway Inhibitors

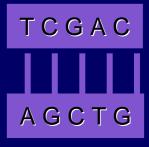
- Hedgehog signaling pathway important in embryogenesis
- Regulating adult stem cells
- Involved in maintenance and regeneration of adult tissues
 - Metastatic basal cell carcinoma refractory to conventional chemotherapy
 - Frequently associated with mutations in hedgehog signaling pathway
 - GDC-0449 an inhibitor of smoothened homologue (SMO) of hedgehog
 - Phase I trial in which 18/33 patients had a measureable response

Fundamentals of Surgical Oncology

Biology is King

Selection is Queen

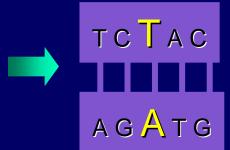
Technical maneuvers are the


Prince and Princess

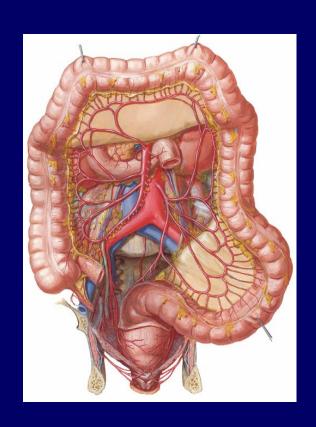
Occasionally the prince and princess try to overthrow the powerful forces of the King and Queen, sometimes with temporary apparent victories, usually to no long term avail.

Lynch Syndrome Results From Failure of DNA Mismatch Repair (MMR) Genes

Base pair mismatch



Defective DNA repair (MMR+)



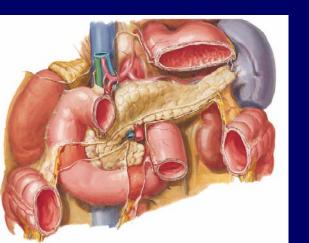
Colorectal cancer

- 5 cm margin when possible
- 1 cm margin for low rectal with XRT
- Take major vascular pedicle at origin along with lymph nodes
- Equivalent cancer outcomes from laparoscopic vs. open


Melanoma

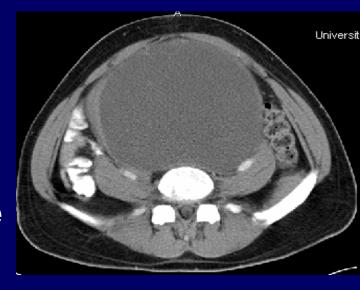
- 1 cm margin for <1mm deep primary
- 2 cm margin for >1mm deep primary
- Exceptions for hands and face
- SLN biopsy for >1mm deep primary
- Sentinel lymph node biopsy for staging
- Lymph node dissection for metastasis

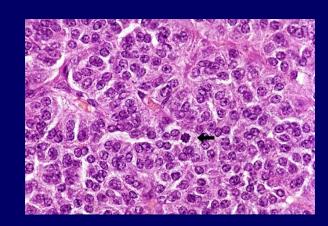
Gastric Cancer


- 5 cm margin when possible
- Take major vascular pedicle with lymph nodes
- Remove lymph node station beyond obviously involved nodes
- Splenectomy generally not indicated
- D2 dissection no survival benefit

Pancreatic Cancer

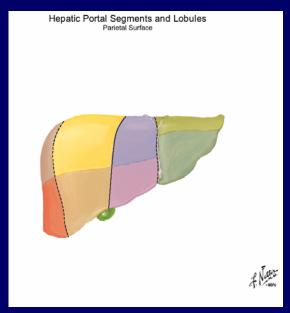
- Resectability is in the eye of the beholder
- Contraindications include Celiac, SMA or Hepatic artery involvement
- Relative contraindications include portal vein or lymph node positive disease

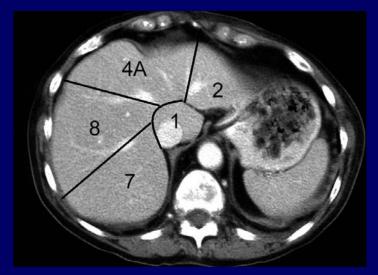


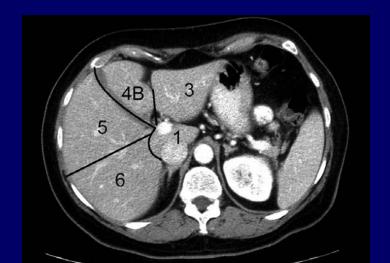


Sarcoma

- 1-2 cm gross margin
- Preserve neurovascular structures
- No need for lymph nodes*
- Radiation reduces local recurrence
- Chemotherapy of limited value

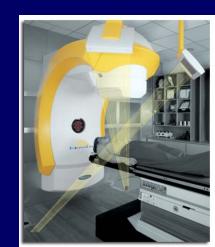

Carcinoids




- Slow growing
- Surgery for symptoms obstruction, hormonal
- Debulking as a goal
- <1 cm remove tumor only</p>
- >2 cm remove tumor and lymph nodes
- 1-2 cm consider removing lymph nodes

Liver Tumors

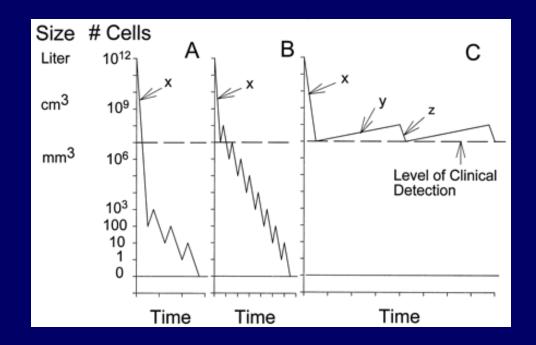
- Primary vs. metastatic
- Resectability
 - Eye of the beholder
 - Real estate
 - Defined by what will be left behind (not by what can be removed)

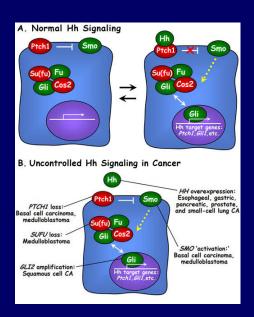


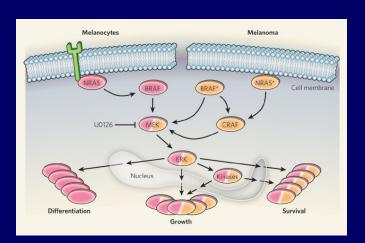
Principles of Radiation Oncology

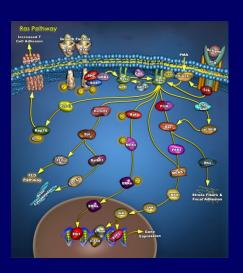
Radiation Therapy

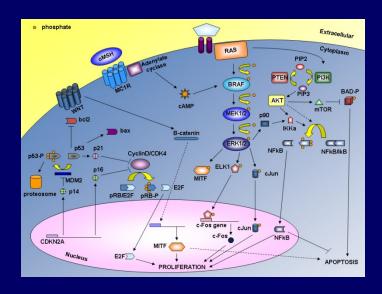
- Rapidly dividing cells
- Can help reduce local recurrence rate
- Organ preservation (breast, larynx, anal sphincter, extremity)
- Technology and targeting improving

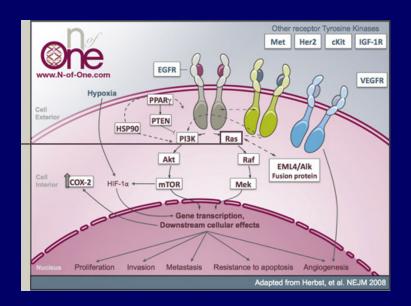

Breast cancer
Prostate cancer
Rectal cancer
Head & Neck
Sarcomas

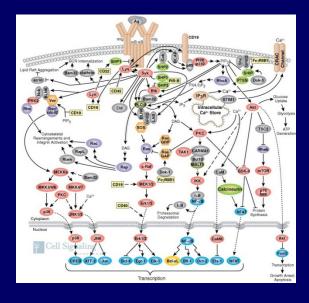


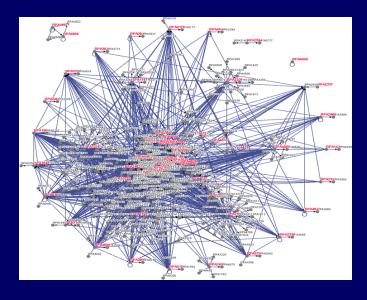

Principles of Medical Oncology

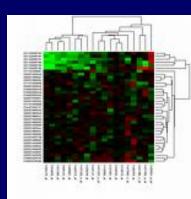

Concepts of Chemotherapy


- Tumor doubling time
- Adjuvant vs. Neoadjuvant
- Targeting molecular pathways
- Biologic response indicators
- Drug development phase I, II, III









Future of Surgical Oncology

- Growing opportunity
- 1 in 3 diagnosed with some form of cancer
- Aging population
- Increased need for surgical specialists with broad knowledge of cancer treatments
- Integration of multiple therapies
- Field wide open for basic and clinical research
- Intellectually stimulating rapid progress
- Molecular evaluation of tumor

Rules of Surgical Oncology

Biology is King

Selection is Queen

Technical maneuvers are the

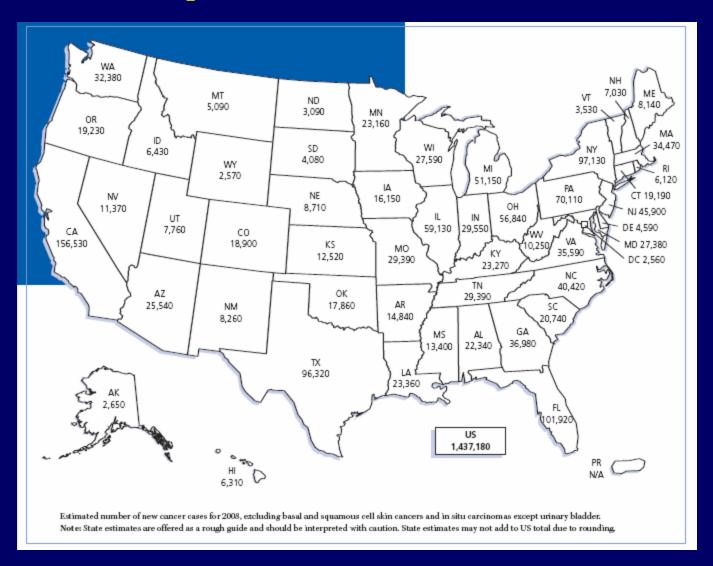
Prince and Princess

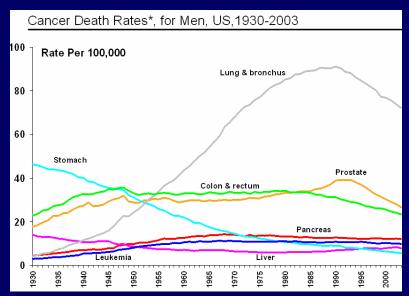
Occasionally the prince and princess try to overthrow the powerful forces of the King and Queen, sometimes with temporary apparent victories, usually to no long term avail.

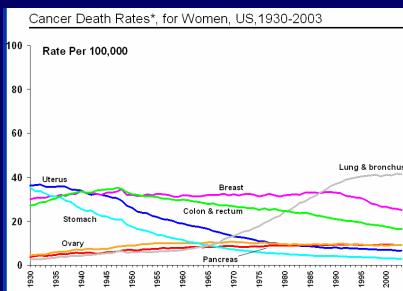
#1 Rule of Surgical Oncology

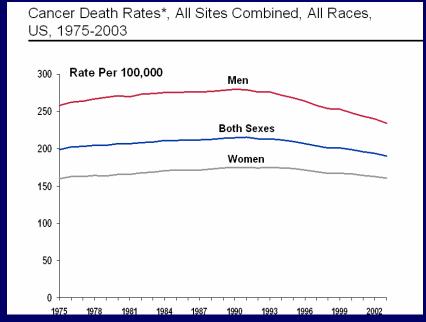
When in doubt - consult this man

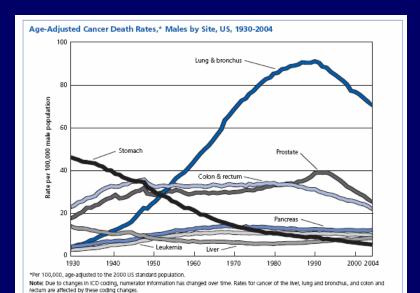
Future of Surgical Oncology

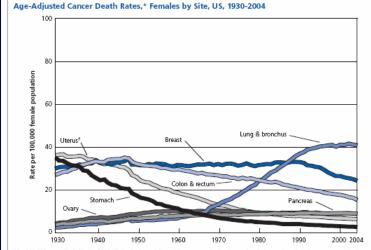

Past Radical resection


Present Conservative resection (laparoscopic approaches)


Future ?

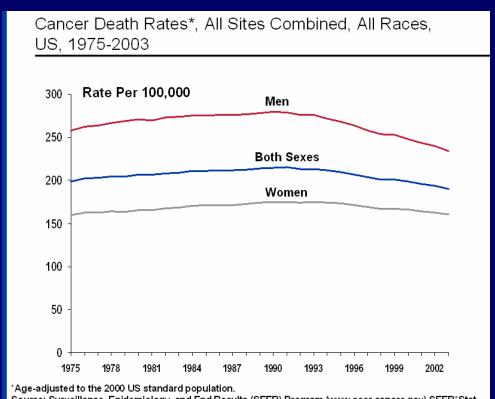

Tumor Biology


Tumor Type	Estimated Tumor Doubling Time (days) 1.5		
Choriocarcinoma			
ALL	4-6		
Hodgkin's	38		
GI adenocarcinoma	80-130		



Source: US Mortality Data 1960 to 2004, US Mortality Volumes 1930 to 1959, National Center for Health Statistics, Centers for Disease Control and

American Cancer Society, Surveillance Research, 2008



Per 100,000, age-adjusted to the 2000 US standard population. 1 Uterus cancer death rates are for uterine cervix and uterine corpus combined.
 Note: Due to changes in ICD coding, numerator information has changed over time. Rates for cancer of the lung and bronchus, colon and rectum, and overy are affected by these coding changes.

Source: US Mortality Data 1960 to 2004, US Mortality Volumes 1930 to 1959, National Center for Health Statistics, Centers for Disease Control and Prevention, 2006.

American Cancer Society, Surveillance Research, 2008

Prevention, 2006.

*Age-adjusted to the 2000 US standard population.

Source: Surveillance, Epidemiology, and End Results (SEER) Program (www.seer.cancer.gov) SEER*Stat

Database: Mortality - All COD, Public-Use With State, Total U.S. (1969-2003), National Cancer Institute, DCCP

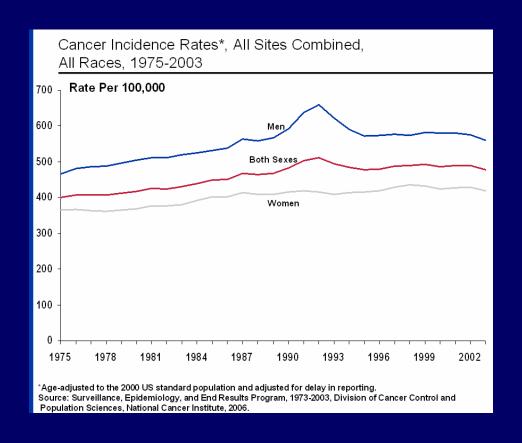
Surveillance Research Program, Cancer Statistics Branch, released April 2006. Underlying mortality data

provided by NCHS (www.cdc.gov/nchs).

Probability of Developing Invasive Cancers (%) Over Selected Age Intervals by Sex, US, 2003-2005*

		Birth to 39	40 to 59	60 to 69	70 and Older	Birth to Death
All sites [†]	Male	1.42 (1 in 70)	8.44 (1 in 12)	15.71 (1 in 6)	37.74 (1 in 3)	43.89 (1 in 2)
	Female	2.07 (1 in 48)	8.97 (1 in 11)	10.23 (1 in 10)	26.17 (1 in 4)	37.35 (1 in 3)
Urinary	Male	0.02 (1 in 4,448)	0.41 (1 in 246)	0.96 (1 in 104)	3.57 (1 in 28)	3.74 (1 in 27)
bladder [‡]	Female	0.01 (1 in 10,185)	0.12 (1 in 810)	0.26 (1 in 378)	1.01 (1 in 99)	1.18 (1 in 84)
Breast	Female	0.48 (1 in 208)	3.79 (1 in 26)	3.41 (1 in 29)	6.44 (1 in 16)	12.03 (1 in 8)
Colon & rectum	Male	0.08 (1 in 1,296)	0.92 (1 in 109)	1.55 (1 in 65)	4.63 (1 in 22)	5.51 (1 in 18)
	Female	0.07 (1 in 1,343)	0.72 (1 in 138)	1.10 (1 in 91)	4.16 (1 in 24)	5.10 (1 in 20)
Leukemia	Male	0.16 (1 in 611)	0.22 (1 in 463)	0.35 (1 in 289)	1.17 (1 in 85)	1.50 (1 in 67)
	Female	0.12 (1 in 835)	0.14 (1 in 693)	0.20 (1 in 496)	0.77 (1 in 130)	1.07 (1 in 94)
Lung &	Male	0.03 (1 in 3,398)	0.99 (1 in 101)	2.43 (1 in 41)	6.70 (1 in 18)	7.78 (1 in 13)
bronchus	Female	0.03 (1 in 2,997)	0.81 (1 in 124)	1.78 (1 in 56)	4.70 (1 in 21)	6.22 (1 in 16)
Melanoma	Male	0.16 (1 in 645)	0.64 (1 in 157)	0.70 (1 in 143)	1.67 (1 in 60)	2.56 (1 in 39)
of the skin§	Female	0.27 (1 in 370)	0.53 (1 in 189)	0.35 (1 in 282)	0.76 (1 in 131)	1.73 (1 in 58)
Non-Hodgkin	Male	0.13 (1 in 763)	0.45 (1 in 225)	0.58 (1 in 171)	1.66 (1 in 60)	2.23 (1 in 45)
lymphoma	Female	0.08 (1 in 1,191)	0.32 (1 in 316)	0.45 (1 in 223)	1.36 (1 in 73)	1.90 (1 in 53)
Prostate	Male	0.01 (1 in 10,002)	2.43 (1 in 41)	6.42 (1 in 16)	12.49 (1 in 8)	15.78 (1 in 6)
Uterine cervix	Female	0.15 (1 in 651)	0.27 (1 in 368)	0.13 (1 in 761)	0.19 (1 in 530)	0.69 (1 in 145)
Uterine corpus	Female	0.07 (1 in 1,499)	0.72 (1 in 140)	0.81 (1 in 123)	1.22 (1 in 82)	2.48 (1 in 40)

^{*}For people free of cancer at beginning of age interval.


Source: DevCan: Probability of Developing or Dying of Cancer Software, Version 6.3.0. Statistical Research and Applications Branch, National Cancer Institute, 2008. srab.cancer.gov/devcan.

American Cancer Society, Surveillance and Health Policy Research, 2009

[†] All sites excludes basal and squamous cell skin cancers and in situ cancers except urinary bladder.

[‡]Includes invasive and in situ cancer cases.

[§] Statistic is for whites only.

Five-year Relative Survival (%)* during Three Time Periods By Cancer Site

Site	1975-1977	1984-1986	1996-2002
All sites	50	53	66
Breast (female)	75	79	89
Colon	51	59	65
Leukemia	35	42	49
Lung and bronchus	13	13	16
Melanoma	82	86	92
Non-Hodgkin lymphoma	48	53	63
Ovary	37	40	45 [†]
Pancreas	2	3	5
Prostate	69	76	100
Rectum	49	57	66
Urinary bladder	73	78	82

*5-year relative survival rates based on follow up of patients through 2003. †Recent changes in classification of ovarian cancer have affected 1996-2002 survival rates. Source: Surveillance, Epidemiology, and End Results Program, 1975-2003, Division of Cancer Control and Population Sciences, National Cancer Institute, 2006.

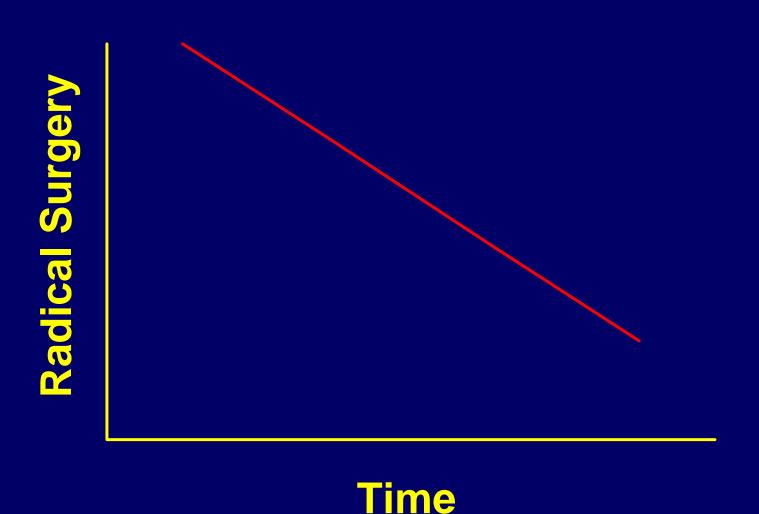
Principles of Patient Selection

- Know tumor biology
- Know extent of disease
- Disease free interval
- Clarify goal of operation (cure, debulk, palliate)

Patient Selection - Liver Metastasis

Risk Factors

- •Node positive primary
- •Disease free interval <12 mo
- •>1 tumor
- •Size >5cm
- •CEA > 200ng/ml


Table 5. CLINICAL RISK SCORE FOR TUMOR RECURRENCE

Survival (%

Score	1-yr	2-yr	3-yr	4-yr	5-yr	Median (mo)
0	93	79	72	60	60	74
1	91	76	66	54	44	51
2	89	73	60	51	40	47
3	86	67	42	25	20	33
4	70	45	38	29	25	20
5	71	45	27	14	14	22

Each risk factor is one point: node-positive primary, disease-free interval <12 months, >1 tumor, Size >5 cm, CEA >200 ng/ml.

History of Surgical Oncology

Lifetime Probability of Developing Cancer, by Site, Women, US, 2001-2003*

Site	Risk
All sites [†]	1 in 3
Breast	1 in 8
Lung & bronchus	1 in 16
Colon & rectum	1 in 19
Uterine corpus	1 in 40
Non-Hodgkin lymphoma	1 in 55
Ovary	1 in 69
Melanoma	1 in 73
Pancreas	1 in 79
Urinary bladder [‡]	1 in 87
Uterine cervix	1 in 138

^{*} For those free of cancer at beginning of age interval. Based on cancer cases diagnosed during 2001 to 2003. † All Sites exclude basal and squamous cell skin cancers and in situ cancers except urinary bladder. ‡ Includes invasive and in situ cancer cases

Source: DevCan: Probability of Developing or Dying of Cancer Software, Version 6.1.1 Statistical Research and Applications Branch, NCI, 2006. http://srab.cancer.gov/devcan

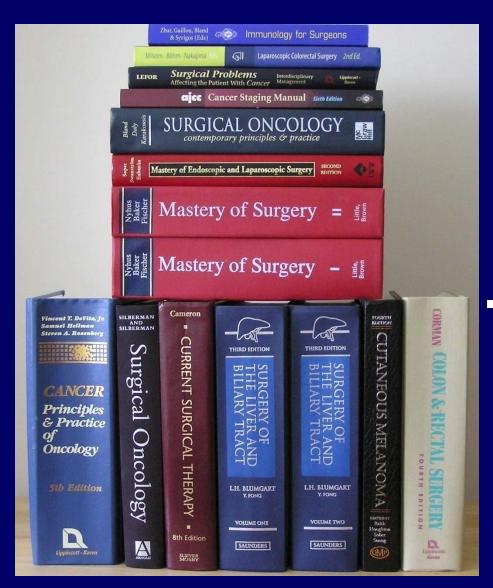
Lifetime Probability of Developing Cancer, by Site, Men, 2001-2003*

Site	Risk
All sites [†]	1 in 2
Prostate	1 in 6
Lung and bronchus	1 in 12
Colon and rectum	1 in 17
Urinary bladder [‡]	1 in 28
Non-Hodgkin lymphoma	1 in 47
Melanoma	1 in 49
Kidney	1 in 61
Leukemia	1 in 67
Oral Cavity	1 in 72
Stomach	1 in 89
	All sites† Prostate Lung and bronchus Colon and rectum Urinary bladder‡ Non-Hodgkin lymphoma Melanoma Kidney Leukemia Oral Cavity

^{*} For those free of cancer at beginning of age interval. Based on cancer cases diagnosed during 2001 to 2003. † All Sites exclude basal and squamous cell skin cancers and in situ cancers except urinary bladder.

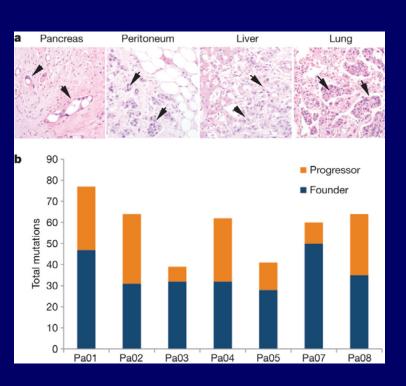
[‡]Includes invasive and in situ cancer cases

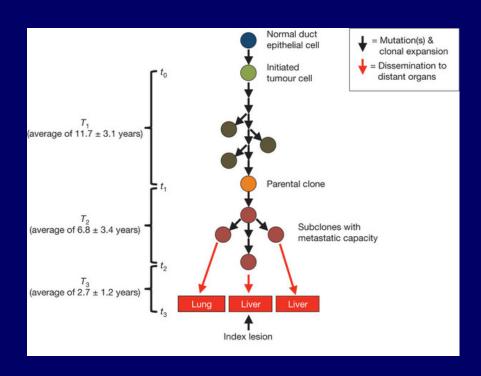
Source: DevCan: Probability of Developing or Dying of Cancer Software, Version 6.1.1 Statistical Research and Applications Branch, NCI, 2006. http://srab.cancer.gov/devcan

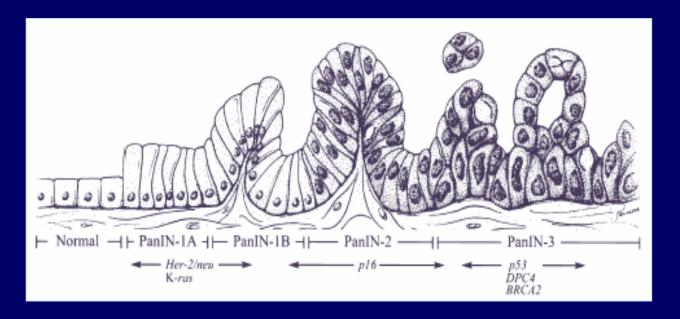

Imaging of Cancer Patients

Pre-op Imaging

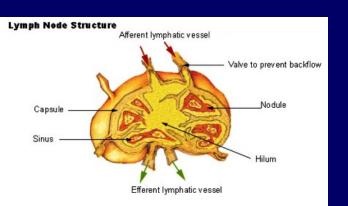
- Apply tumor biology principles
- What would change the type or timing your operation?

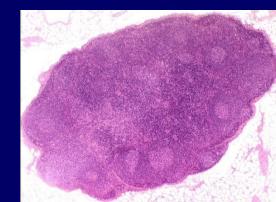

Post-op Imaging


- Selective
- Patient anxiety
- Salvage surgery for recurrence is rare
- No prospective trial for "routine" post-op testing has shown a benefit in survival



Molecular Events in Pancreatic Cancer


- Oncogene activation/overexpression
 - K-ras (85%)
- Receptor tyrosine kinase overexpression
 - HER2/neu
 - EGFR


- Tumor suppressor mutation
 - p53 (50%)
 - SMAD4 (DPC4) (50%)
- Cell cycle regulatory protein silencing/loss
 - p16 (8%)
- Nuclear Transcription
 Factor Activation

Principles of Lymph Nodes

Lymph node dissection

- Harvest lymph nodes for:
 - 1 staging
 - 2 local control
 - 3 interrupt metastatic cascade
- Factor in risk/benefit ratio

