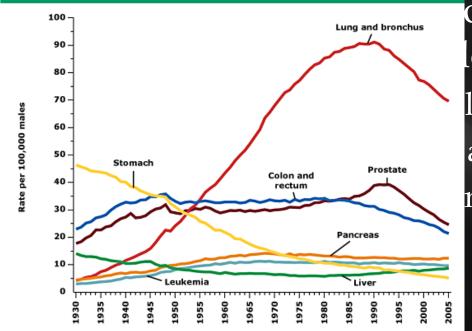

RESECTION FOR STAGE I LUNG CANCER: BIGGER IS NOT BETTER

Sagar Damle, MD
University of Colorado Denver
May 23, 2011

But first, a recap...

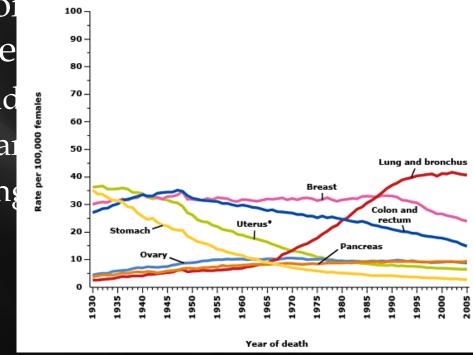
- We have debated many times. Here are the topics, and a recap of the last few...
- Pre-operative nutrition
 - Babu pro; Damle con
- Utility of ECMO
 - Babu pro; Damle con
- Transplant vs. LVAD
 - Babu Transplant; Damle VAD
- Thoracic Aneurysm: Open vs. Endovascular
 - Babu Open; Damle Endovascular
- And the winner was...

Dr. Babu will argue that...



Lung Cancer

- Most common cause of cancer mortality...worldwide
 - 1.2 million deaths worldwide yearly
 - >220,000 deaths in US annually
 - Death in men decreasing, in women stable
- Risk factors
 - Smoking
 - Radiation Therapy


Lung Cancer

Annual age-adjusted cancer death rates among males for selected cancers, United States, 1930-2005

Year of death

Annual age-adjusted cancer death rates* among females for selected cancers, United States, 1930-2005

Dx and Staging

- Typical workup: CT Chest, MRI Brain, PET scan
 - Mediastinal staging (PET, EBUS, Mediastinoscopy)

T Staging

	Diam	Scopy	At	electasis	Invasion	Nodules
Т1	T1a ≤ 2cm T1b >2-3cm	No invasio lobar bron				
Т2	T2a: >3-5cm T2b: >5-7cm or	main bronchus > 2cm to carina	or pneu	telectasis obstructive monia to hilus t entire lung	visceral pleura	
Т3	> 7cm or	< 2cm to carina	V	Vhole lung	Chest wall diafragm phrenic nerve mediast pleura parietal pericard	Nodules in same lobe
Т4		Tumor in carina			Heart great vessels trachea esophagus spine	Nodules in other ipsilateral lobes

N Staging

Regional lymph nodes (N) N1 In ipsilateral peribronchial and/or ipsilateral hilar lymph nodes and intrapulmonary nodes N2 In ipsilateral mediastinal and/or subcarinal lymph nodes N3 In contralateral mediastinal, contralateral hilar, ipsilateral or contralateral scalene or supraclavicular lymph nodes

Overall Stage

	T1a	T1b	T2a	T2b	Т3	T4
NO	1	A	IB	IIA	IIB	IIIA
N1	11	Α	IIA	IIB	IIIA	IIIA
N2	II	IA	III	A	IIIA	IIIB
N3	II	IB	III	В	IIIB	IIIB

For this debate...

- We will focus on stage Ia tumors
- Which equals:
 - T1 (Tumors < 3 cm in size without involvement of pleura)
 - □ T1a: <2cm
 - □ T1b: 2-3cm
 - N0 (No positive nodes)
 - M0 (No distant mets)
- Why is this important?
 - Widespread use of CT
 - Implementation of screening programs.

Why *might* lobectomy be better?

- Wider resection margin
 - ? Improved clearance
 - ? Improved local recurrence
- More nodes sampled
 - ? Impact on survival
- Minimal added cost and hospital stay

Rationale for limited resection

- Patients with lung CA also typically have COPD/emphysema
 - Limited resection better for long-term pulm function
- Smaller operation with quicker recovery
- Most NSCLC are peripheral and amenable to limited resection

In the next slides, I will prove:

- Short-term: Periop Issues favor Wedge/Limited Resection
 - 1) $\overline{\text{Cost and }}\overline{\text{LOS}}$
 - 2) Pulmonary function
 - 3) Perioperative morbidity & mortality
- Long-term: Survival advantage for limited resection (and no significant difference in recurrence)
 - 1) All comers
 - 2) Segmentectomy vs lobectomy
 - 3) Specific histologies

Cost Analysis

Cost Analysis for Thoracoscopy: Thoracoscopic Wedge Resection and Lobectomy Surg Toda

Surg Today Jpn J Surg (1998) 28:41–45

- Retrospective review 80 patients, early 90s
- Primary focus was VATS vs open
- Results:

	VATS Wedge (30)	VATS Lobe (10)
LOS	10 d	25 d
OR Time	1 h	5 h
Chest Tube Duration	2 d	7 d
Total Hospital Charges	\$6,100	\$18,000

Pulmonary Function

■ LCSG (ATS 1995)

Test	Limited (Mean % Diff)	Lobe (Mean % Diff)	p Value
6 Month FEV1			
6 Month FVC			
12 Month FEV1			

Perioperative Morbidity and Mortality

WEDGE RESECTION VERSUS LOBECTOMY FOR STAGE I (T1 NO MO) NON-SMALL-CELL

LUNG CANCER

Landreneau et al.

(J Thorac Cardiovasc Surg 1997;113:691-700)

Compared VATS Wedge vs open wedge vs open lobectomy

	Open WR	VATS WR	vs	Lobectomy	P Value
Age (yt)	68	71	VS	63	0.0002
COPD (%)	64	69	VS	14	0.001
FEV ₁ (% predicted)	69	61	VS.	88	0.0001
DLCO (% predicted)	73	51	VS	81	0.001

Sicker Patients

VATSOpenWRWRLobectomy. p Value 0.2003.3 Operative mor-VS. tality (%) Postop, stay 7.76.310.60.0002WS. (days)

Better Outcome

Perioperative Morbidity and Mortality

SUB-LOBAR LUNG RESECTION OF PERIPHERAL T1N0M0 NSCLC DOES NOT AFFECT LOCAL RECURRENCE RATE

Rome, Italy

Scandinavian Journal of Surgery 98: 225-228, 2009

C	Characteristics of patients of the two groups.		
	Lobectomy 116 patients	Sub-lobar resection 36 patients	pValue
Male	99 (85%)	31 (86%)	0,57
Female	17 (15%)	5 (14%)	0,57 8,56 0,01
Age	64,8 ± 8,7	68,7±8,4	0,01
FĚV1	84,9% ± 18,5	$71\% \pm 25,6$	0,01
Comorbidities	57 (49%)	26 (72%)	0,02
T1 NO M0	29 (25%)	22 (61%)	0,004
Adenocarcinom	50 (43,1%)	13 (36,1%)	0,58
Squamous cell	45 (38,8%)	10 (27,8%)	0,32
Bronchoalveola	10 (8,6%)	10 (27,8%)	0,007
Indifferentiated	11 (9,5%)	3 (8,3%)	0,9

Periop Summary

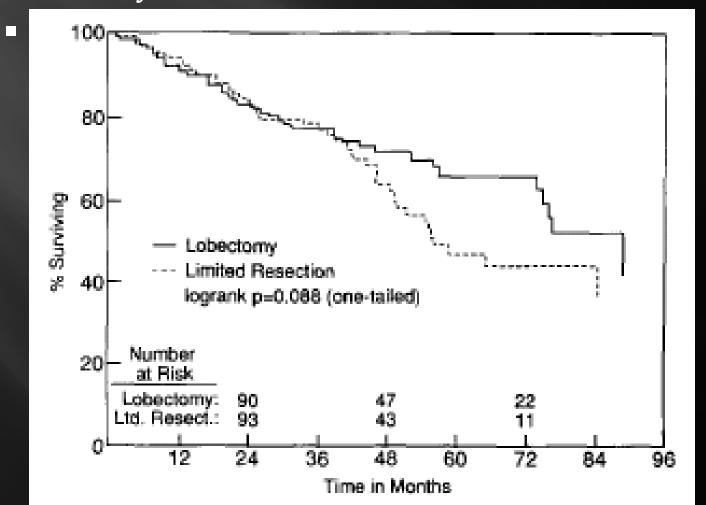
This should come as no surprise. Lobe is a bigger operation that is more dangerous and most costly compared to a limited operation.

IS THERE A SURVIVAL ADVANTAGE?

LCSG: The Trial That Confused Us All

Randomized Trial of Lobectomy Versus Limited Resection for T1 N0 Non-Small Cell Lung Cancer

Lung Cancer Study Group (Prepared by Robert J. Ginsberg, MD, and Lawrence V. Rubinstein, PhD)


(Ann Thorac Surg 1995;60:615-23)

LCSG ATS 1995

- 1982-1988
- 247 patients with:
 - <3 cm tumor in all dimensions</p>
 - No evidence of met dz (by labs)
 - Ability to undergo a lobectomy
- "Limited Resection" (122 pts)
 - Wedge with 2 cm margin
 - Segment with anatomical division of vessels and bronchus
 - All patient had lymph node sampling

LCSG ATS 1995

Mortality Outcome

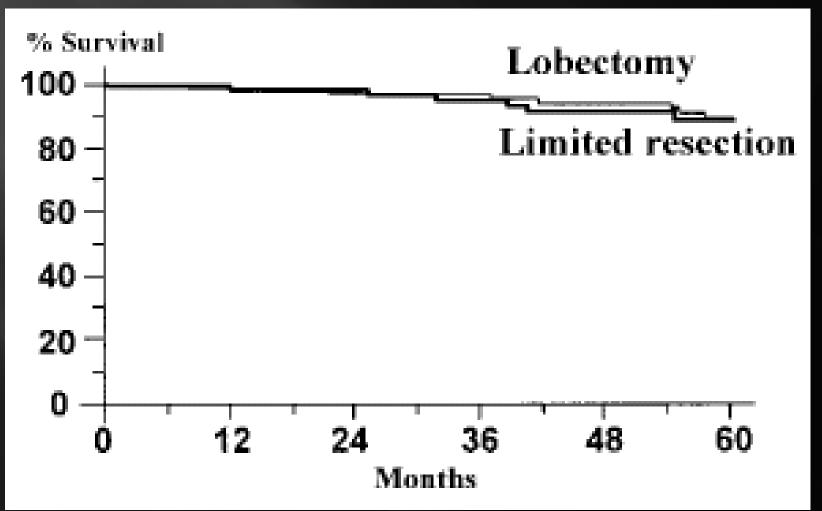
LCSG ATS 1995

- Mortality Outcome
 - No significant difference
- Local Recurrence
 - Higher in wedge resection...BUT
 - If you count secondary tumors...
 - Then, there is NO difference

Overall, we should conclude: NO difference

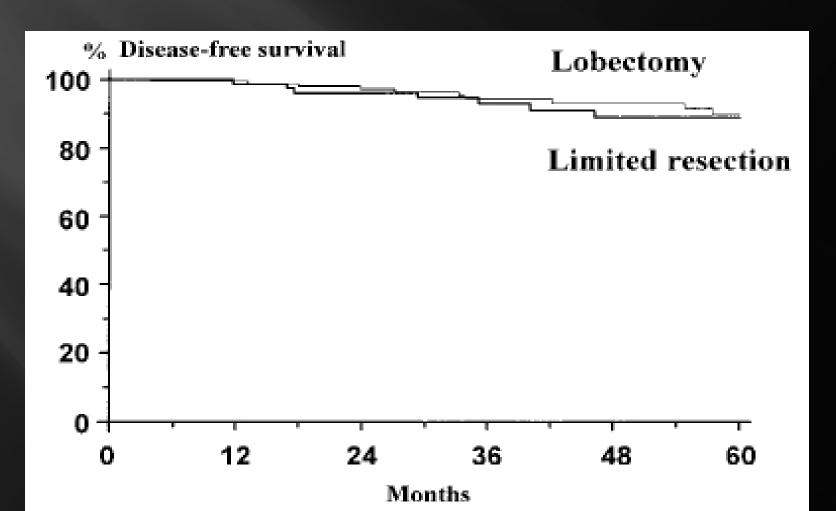
Problems with LCSG

- Few patients
 - 60+% of patient screened were excluded
- Dx by CXR!!!
- Lumped wedges and segmentectomies
- Tumor volume/size in each group not specified.
- Lets jump ahead almost 10 years...


Nigata, Japan

J Thorac Cardiovasc Surg 2003;125:924-928

- □ Prospective trial, 1992- 2000
 - Patient able to undergo lobectomy, asked to undergo wedge/segment instead
 - NSCLC < 2 cm in size
- Results
 - 74 limited resection (60 segment, 14 wedge), 159 lobes
 - Lymph node dissection variable
 - Primary outcomes: Survival and recurrence


J Thorac Cardiovasc Surg 2003;125:924-928

Survival: IDENTICAL

J Thorac Cardiovasc Surg 2003;125:924-928

Recurrence: Same

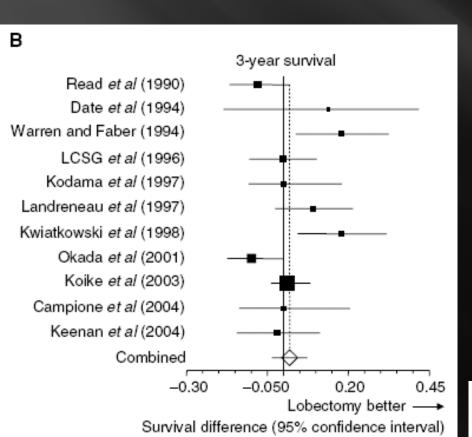
J Thorac Cardiovasc Surg 2003;125:924-928

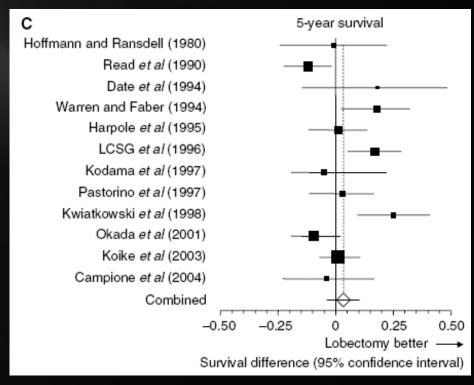
Conclusion:

• Limited resection is an equivalent alternative in patients with T1 tumors < 2 cm in size.

SEER Database

- Run by NCI
- Geographic cancer registry of ~ 28% of population
- 2 papers based on this database
 - Wisnivesky JP et al. Limited resection for the treatment of patients with stage IA lung cancer. Ann Surg 2010; 251:550-554
 - Kates M et al. Survival following lobectomy and limited resection for the treatment of stage I nonsmall cell lung cancer ≤ 1 cm in size. Chest 2011; 139:491-496.


SEER Review


- Ann Surg 2010
 - 1165 patients (Older)
 - □ 17% limited resection
 - Outcome
 - □ Mortality the SAME for lesion < 2 cm
- Chest 2011
 - ~2100 patients
 - □ 33% limited resection
 - Outcome
 - □ Mortality the SAME for lesion < 1 cm

Meta-Analysis

Survival following lobectomy vs limited resection for stage I lung cancer: a meta-analysis H Nakamura*, N Kawasaki, M Taguchi, and K Kabasawa²

Meta-analysis of 14 publications

British Journal of Cancer (2005) 92, 1033-1037

© 2005 Cancer Research UK All rights reserved 0007 - 0920/05

Anyone else?

	Mortality	Morbidity
Giacomo TD. Scand J of Surg 2009. Italy	Same	Same
Sugi K. EJCTS 2010. Japan.	Same	Same
Kraev K. Chest 2007. OR	Same (all comers)	

No mortality or significant recurrence benefit to lobectomy in all comers

- But, a criticism of many of these papers has been mixed bag of wedge and segmentectomy and a mixed bag of histologies.
- Is there any benefit to segmentectomy vs lobectomy?

Segment vs Lobe

- UK. EJCTS 2005
- Case Postoperative results

Н	Se		Lobectomy	Segmentectomy	P
		Hospital mortality	1 (5.9%)	1 (5.9%)	NS
	17	Complications	3 (18%)	3 (18%)	NS
		Hospital stay	6 (3-30) days	8 (4-31) days	NS
	Av	Drainage time	4 (2-13) days	3 (1-30) days	NS
		Expressed as median	(range) or number (%).		

■ Mean Lvi 1370

Results

Long-term results

	Lobectomy	Segmentectomy	P
Total recurrence	3 (18%)	3 (18%)	NS
Loco-regional recurrence	2 (12%)	0	NS
Actuarial 3-year survival	69%	94%	NS
Actuarial 5-year survival	64%	70%	NS

Flawed data...

- Role of adjuvant therapy
 - Some data to support wedge + XRT
- In most data, wedge resection patient lot sicker than lobectomy patients
 - Skews mortality results
- Outcome results are small so need large populations to show significant differences
- Not all NSCLCs are the same (BAC vs SCC)

In Summary...

- Lobectomy is a risky operation for potential for disaster
 - Longer LOS, more pain, etc
- Lobectomy offers NO mortality advantage for these early stage tumors
- Recurrence rates are essentially the same
 - And, prior wedge offers ability for re-resection

Conclusion

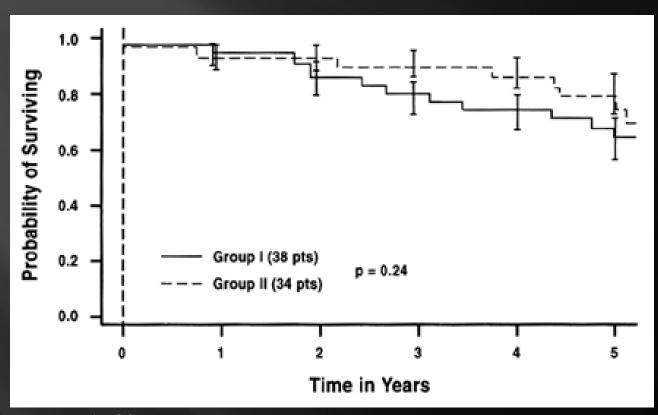
Lobectomy offers NO advantage over limited resection in the treatment of stage I lung cancer. Therefore, bigger is not always better.

Ashok the salesman...

■ He will try to sell you this as a reliable old car that has proven data...

But, if you look a little closer, you'll find there is nothing there to support it!

My opponent, the "classy" salesman.


• His arguments:

- Only 1 "Great" RCT
 - Long time ago
 - No statistical mort difference
 - Can't effectively do new RCTs
- Recurrence worse after limited resection
 - Modern studies show no difference
 - Some data suggests that recurrence s/p sublobar resection can be re-resected with good results.

Segmentectomy vs Lobectomy In Patients With Stage I Pulmonary Carcinoma

- Warren WH & Faber P. JTCVS 1994; 107:1087-94
- Retrospective review 1980-1988
- Segment vs lobe for T1N0 or T2No
- Excluded wedge resection
- No evaluation of pre-op variables.
- Results
 - 169 pts (66 segmentectomy, 103 lobectomies)

Tumors < 2 cm...

- No difference.
- But, recurrences were higher.

Outcome of Recurrence

- Segmental Resection with recurrence
 - 4 patients underwent further resection with 50% survival @ 5 yrs AFTER second resection
 - Remainder had adjuvant tx (not surgical candidates)
 with median survival 10 mo
- Lobectomy with recurrence
 - NONE could have further surgical therapy
 - Remainder had adjuvant tx with median survival 11 mo

Repeat Conclusion

- Lobectomy offers NO periop benefit.
- Lobectomy offers NO survival benefit.
- Limited resection is better tolerated and does not prevent further surgical therapy for recurrence.

There should be a paradigm shift to treat small tumors with limited resection.

THANK YOU.

RESECTION FOR STAGE I LUNG CANCER: BIGGER IS NOT BETTER

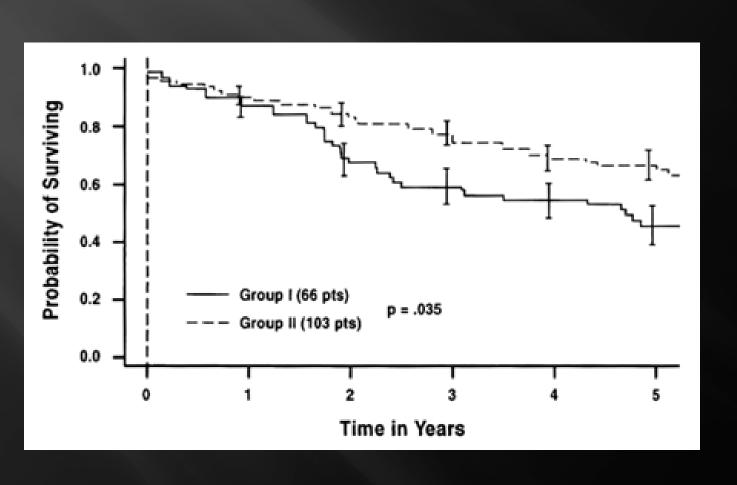
Sagar Damle, MD University of Colorado Denver May 23, 2011

THANK YOU

Future Direction

- Wedge + adjuvant therapy
 - Radioactive seeds
 - XRT
 - Low-dose chemotherapy
- 2 large trials ongoing for segment vs lobe
 - US and Japan

Issue of recurrence


- Biggest criticism of limited resection = RECURRENCE
- But, if you look at the data, recurrences are either the same or only somewhat elevated in sublobar.
- What is the consequence of a recurrence?

Warren paper

Table II. Distribution of carcinomas according to diameter

Tumor size(cm)	Group I <u>(segmentectomy)</u> %	Group II <u>(lobectomy)</u> %	Totals
≤ 2.0	58	33	72
2.1-3.0	20	10	23
>3.0	23	57	74

But, survival better in lobectomy patients. Warren

Survival following lobectomy vs limited resection for stage I lung cancer: a meta-analysis

British Journal of Cancer (2005) 92, 1033-1037

© 2005 Cancer Research UK All rights reserved 0007-0920/05

Meta-analysis of 14 publications

H Nakamura*,1, N Kawasaki1, M Taguchi1 and K Kabasawa2

- 12 retrospective
- 1 case-matched
- 1 RCT (LCSG)
- Results
 - Survival differences @ 1,3 and 5 years:

NO STATISTICAL DIFFERENCE