

"Hypertonic Saline for Resuscitation: Lost in Translation."

Max Wohlauer PGY-4 3/7/2011

Lesson learned in war: large volume resuscitation (3:1) with crystalloid.

Administering plasma in a foxhole on the invasion beach at Iwo Jima.

Crystalloid use during Vietnam War led to dramatic decrease in mortality.

Aggressive Resuscitation: ARDS and ACS - the "New" Syndromes.

Acute Respiratory Distress Syndrome

Abdominal Compartment Syndrome

HTS: Lost in Translation.

1. In-Vitro /
Animal Studies

Immunomodulation Improved hemodynamics

2. Phase II
Clinical Trials

Underpowered

3. Phase III
Clinical Trials

No mortality difference

Holcroft et. al. 1987.

Phase II Trial

Primary Outcome: Survival 30 days after injury or at discharge.

Results: Increased blood pressure in HSD group (p<0.005).

Limitations: Small sample size (20 patients), control group more severely injured.

Mattox et. al. 1991.

Trauma.org

Phase III RCT

Primary Outcome: 24 hr and 30 day survival.

Results: HSD: no statistically significant survival difference compared to LR (HSD 83.4% vs. LR 80.1%, P=0.94)

Limitation: Terminated for futility.

Vassar et. al. 1993.

Primary Outcome: Survival

Conflicting Results:

- HTS increased survival compared to NS, HSD decreased survival.

Wade et. al. 1997.

www.ivteam.com

Meta-analysis of 13 studies, 8 DBRCTs (N=615 HSD, N=618 LR / NS).

Results: Found no increased survival with HTS or HSD (p=0.14).

Limitations: Meta-analysis of small trials involving both out of hospital and ED fluid administration.

Bulger et. al. 2008.

Phase III RCT

Primary Outcome: 28-day ARDS-free survival.

Results: No difference in ARDS-free survival, increased mortality for patients receiving HSD who did not receive blood transfusion.

Limitation: No difference in primary end point, closed for futility.

The Resuscitation Outcomes Consortium (ROC) Trial 2011

Phase III RCT

Primary Outcome: 28-day survival

Results: No difference in overall mortality (p=0.91); increased mortality for patients receiving HTS or HSD who did not receive blood transfusion.

Limitation: Trial terminated by data and safety monitoring board.

The ROC Trial: Increased Early Mortality in HTS and HSD groups.

Annals of Surgery • Volume 253, Number 3, March 2011

Out-of-hospital Hypertonic Resuscitation

TABLE 3. Timing of Death by Transfusion Group

	HSD (N = 220)	HS (N = 256)	NS (N = 376)	₽*	HSD-NS† (95% CI)	HS-NS† (95% CI)
0 units PRBC in first 24 h, n (%)	91 (41.6)	104 (40.8)	139 (37.1)	0.48	4.5 (-4.0 to 13.0)	3.7 (-4.4 to 11.8)
Died in field, n (%)	4 (1.8)	5 (2.0)	3 (0.8)	-‡	1.0‡	1.2‡
Died in field or ED, n (%)	14 (6.4)	23 (9.0)	13 (3.5)	0.01	2.9 (-1.2 to 7.0)	5.6 (1.2 to 9.9)
Died within 6 h of admission, n (%)	15 (6.8)	23 (9.0)	14 (3.7)	0.02	3.1 (-1.1 to 7.3)	5.3 (1.0 to 9.6)
Died within 28 d, n (%)	22 (10.0)	31 (12.2)	18 (4.8)	< 0.01	5.2 (0.4 to 10.1)	7.4 (2.5 to 12.2)

HTS: Problems with the Clinical Trials.

- 1. Study Design
- 2. Patient Population
- 3. Potency of Intervention
 - Timing is everything
 - Duration of hypertonicity

ROC Trial: HTS and HSD: Lower Hemoglobin on Arrival.

Increased mortality due to:

- Higher rate of early hemorrhage.
- Early resuscitation leading to delayed diagnosis and management of shock.

Increased bleeding?

- HTS impairs enzymatic clotting function when it replaces 7.5-10% of blood volume.
- A 4 cc / kg bolus of HTS equates to at least 6% blood volume replacement (higher bleeding patients), many of whom may already be coagulopathic on arrival to ED.

Reed RL II J Trauma 1991. Tan TS Anesthesia 2002. Moore et. al. JACS 2009. Brohi et. al. Ann Surg 2007.

Conclusion

- 1. In-Vitro
- 2. In-Vivo
- 3. Phase II/III trials

Based on existing data, HTS can not be recommended for resuscitating trauma patients.

Thank You.

Recipe for success:

- 1. The right patient: Inclusion criteria paramount.
- 2. The right place: Ambulance, ED, or SICU.
- 3. The right time: HTS may be harmful if given too early or too late.
- 4. The right dose. Benefit of a single dose early or sustained hypertonicity of repeated dosing regimen?