

DO WE NEED RADIATION THERAPY IN PANCREATIC CANCER?

DAVID RABEN, M.D.

PROFESSOR

RADIATION ONCOLOGY, UCCC

DEPARTMENT OF SURGERY GRAND ROUNDS / RSS SESSION

UNIVERSITY OF COLORADO DENVER SCHOOL OF MEDICINE

Dr. Raben does not have any relevant financial relationships with commercial interests to report.

Dr. Raben does not intend to reference off-label/unapproved uses of products or devices in this presentation.

Objectives

- Review current algorithms for pancreatic cancer management
- Discuss issues and controversies related to adjuvant radiation
- SBRT? What is it and does it have a role in this disease?
- New science after all lets be honest this is a systemic disease!

Diagnostic tests and Workup

- Endoscopic US (alone or with ERCP) with biopsy of suspicious nodes if feasible
- CT Abdomen/Chest but I prefer a PET-CT scan
- Labs: please include Ca 19-9 pre-op!! (sensitivity 90%, specificity- 75% and good marker for follow-up if elevated)
- Laproscopy: optional but I think helpful to prevent unnecessary resections; helps in looking for peritoneal seeding or liver mets

TREATMENT ALGORITHM NEWLY DIAGNOSED ADENOCARCINOMA OF PANCREAS

Confirm histologic diagnosis (CT or EUS guided needle aspiration)

l

Staging evaluation: CA 19-9 & liver chemistries; Rule out intra-abdominal and chest metastases with CT abdomen/pelvis, possible laparoscopy, chest x-ray

Exploratory lap arotomy; resection if possible (no encasement of the celiac/superior mesenteric vessels)

Resectable

Unresectable or Borderline Resectable

Standard:

EBRT + 5FU or Gemzar based chemo

Evaluate:

Neoadjuvant RT + chemo

Standard:

EBRT+ 5FU or Xeloda or Gemzar based chemo

Evaluate:

Neoadjuvant EBRT + chemo New therapies:

EGFR, VEGF Inhibitors,
 mTor inhibitors, Src kinase inhibitors, Akt inhibitors

Adjuvant RT or CRT in pancreatic cancer

So what are we really talking about here?

- ~28, ooo cases per year
- ~15% of those are resectable so...~4200 cases in the US each year
- Out of those, at least 15% will have developed metastasis at the time of restaging..so down to ~3600 cases left
- ~80% of the resected cases will have regional nodal spread and/or positive margins (3000 cases)...so not big numbers here!

Resected Pancreatic Cancer

High Risk For Local Failure + Distant Metastases

Has adjuvant CRT been effective in other diseases??

- Breast cancer YES
- Gastric Cancer YES
- Head and Neck Cancer Yes
- Lung Cancer controversial but most say YES in N2 disease
- Rectal cancer YES (for LC)
- Brain YES
- Prostate YES

What do the Europeans say? Dr. Neoptolemos on RT for Pancreatic ca

- Ann Surg (2002): Espac 1 has clearly and unequivocally rejected the survival value of adjuvant chemoradiotherapy
- Clinical Gastroenterology (2002): Adjuvant chemoradiotherapy is of no benefit.
- Expert Opinion (2002): It is not necessary to give chemoradiotherapy when chemotherapy provides as good, if not better results.
- J Surg Oncol Clin N Amer (2004): The standard treatment for pancreatic cancer is now resection and adjuvant chemotherapy
- Br J Ca (2005): Routine use of chemoradiotherapy is not warranted

Here's the Problem: Patterns Of Failure After Surgery

Study	# Pts.	Local	Peritoneal	Liver
		(%)	(%)	(%)
Tepper	26	50	-	-
Griffin	36	53	31	44
Whittington	29	85	23	23
Ozaki	14	86	36	79
Westerdahl	74	86	-	92

Retroperitoneal margin a major problem

Pancreas Ca: Patterns of Failure After Surgery

MGH: 72 Patients Underwent Resection of Pancreatic Head Carcinoma:

 37/72 Patients (51%): Tumor Extension to Margins (Retroperitoneum-27, Pancreatic Transection-14, Bile Duct-4)

Intergroup (RTOG 97-04) Trial

Crude data on 538 patients

	RT + 5-FU	RT + Gemzar
SURGICAL MARGINS		
Negative	45%	39%
Positive	32%	34%
Unknown	23%	26%

What about around the world? Pancreatic Adenocarcinoma Positive Margin Resection

Author (YR)	N	Margin	Med S
Neoptolemos (2001)	101	R1	11
Benessai (2000)	15	R1/2	9
Sohn (2000)	184	R1/2	12
Millikan (1999)	22	R1	8
Nishimura (1997)	70	R1/2	6
Sperti (1996)	19	R1/2	7
Nitecki (1995)	28	R2	9
Yeo (1995)	58	R1/2	10
Willett (1993)	37	R1/2	12

Local Failure After Resection

A Significant Clinical Problem: Pain, Obstruction (Biliary, Gastric), and Bleeding

Efforts to Improve Local Control

- Postoperative RT+ChT
- Preoperative RT+ChT

For the surgical residents: Two Important GITSG Studies (1985): The Beginning!!

Resected Pancreatic Ca

n=43

Observation

RT + 5-FU

Resected Rectal Ca

n=227

Observation

RT

5-FU + MeCCNU

RT + 5-FU/MeCCNU

Lessons from Rectal Ca Trials (1985-2004)

LC + S Improved by:

- Combined Modality Tx (RT + ChT)
- Modern Tx: Continuous + Higher Dose RT (50-54 Gy) vs Lower Dose (40 Gy)
- PVI vs. Bolus 5-FU with RT
- Sequence: Preop > Postop
- More QA not Less (RT, ChT, Path, Surgery)
- Now using IMRT based approaches with image guidance

Surgeons view of radiation oncology

IMRT and IGRT are becoming standard

Modern Technological Innovations

Stereotactic targeting 3-D conformal avoidance

IMRT

4-D motion assessment

Motion control

Image guidance

ALL FACILITATING STEREOTACTIC
ABLATIVE AND HYPOFRACTIONATED
RADIOTHERAPY

Adjuvant Pancreatic Ca Trials

Table 1: Phase III-studies for adjuvant the

Group - Study Year	Patients (n)	Inclusion criteria Resection- Status	Treatment arms	Median overall survival (Months)	<i>p</i> -value	Preoperative imaging
GITSG- 1985[18]	49	RO	CRT Observation	21.0 10.9	0.005	No
EORTC- 1999[22]	114*	RO	CRT Observation	17.1 12.6	0.099	No
ESPAC-1- 2004[17]	289#	R0 or R1	Cx No Cx ^{&}	21.6 16.9	Not available	No
CONKO-001- 2007[19]	368	R0 or R1	Cx Observation	22.1 20.2	0.06	Yes
RTOG 9704 2008[20]	442^	R0 or R1	CRT + GEM CRT + 5-FU	20.6 16.9	0.033	Yes

GITSG (1974): 40 Gy (SC) + Bolus 5-FU

Path QA: Yes

RT QA: Yes

EORTC (1987): 40 Gy (SC) + 5-FU

Path QA: Yes

RT QA: Yes

ESPAC 1 (1996): 40 Gy (SC)+ Bolus 5-FU

Path QA: No

RT QA: No

Adjuvant Pancreas Ca: GITSG (1985)

Resected Pancreatic Ca

RT (40 Gy-SC) + 5-FU

Observation

$\underline{\mathbf{T}\mathbf{x}}$	# Pts	MS (mo)	<u>2 Yr. S</u>
40 Gy/5-FU	21	20	<u>43%</u>
Observation	22	11	<u>18%</u>

Pancreas Adjuvant - GTSG Phase III Study Probability of Survival by Treatment Group

Pancreas Adjuvant - GTSG Phase III Study Probability of Survival by Treatment Group

Adjuvant Pancreas / Periampullary Ca: EORTC (1999)

Resected Pancreas/Periampullary Ca

RT (40 Gy-SC) + 5-FU

Observation

Median S (mo) 5 Yr. S (%)

Pancreatic Ca

RT/5-FU (n=60) **17.1**

20

Observe (n=54)

12.6

P=0.099

PANCREAS CANCER: EORTC PHASE III TRIAL Survival - Surgery ± EBRT + 5FU

EORTC (1999): Conclusions

 Pancreas Ca: Trend to Improved S with Adjuvant Tx

Caveats:

- No Maintenance ChT
- 20% of "Tx Patients": No Tx!!
- Underpowered Study

Pancreas Adjuvant – Johns' Hopkins Survival – Surgery ± Postop EBRT + 5-FU

Pancreas Adjuvant - Johns' Hopkins Survival - Surgery ± Postop EBRT + 5-FU Tumors ≥3 cm

Pancreas Adjuvant - Johns' Hopkins Survival - Surgery ± Postop EBRT + 5-FU Margin-Negative Patients

Pancreas Adjuvant - Johns' Hopkins Survival - Surgery ± Postop EBRT + 5-FU Node-Positive Patients

ESPAC-1: European Adjuvant Trial

- 541 Pts. With "Macroscopically Resected" Pancreatic Cancer
- Eleven Countries: Austria, Belgium,
 France, Germany, Greece, Hungary,
 Italy, Spain, Sweden, Switzerland, UK
- 61 Centers

ESPAC-1: European Adjuvant Trial

Two Main Tx Questions:

ChemoRT vs. No ChemoRT

ChT vs. No ChT

ESPAC-1 PHASE III PANCREAS TRIAL: SURGERY ± ADJUVANT

- Randomization methods: 3 separate trials, evaluated as single trial
 - 2x2 factorial (N=285)
 - Surgery alone, EBRT+5FU, 5FU/Leuc, or both
 - Chemoradiotherapy vs none (N=68)
 - Background tx allowed (21/68-unknown)
 - Chemotherapy vs none (N=188)
 - Background tx allowed (61/188-unknown)
- Restaging studies not performed

Restaging CT Study: Critical Prior to Study

Entry Verify Quality of Surgery: Ro / R1 vs R2

R Designation	Gross Resection Mi	croscopic Margin
Ro	complete	negative
R1	complete	positive
R ₂	incomplete	positive

Identify patients (25%) who develop metastatic disease after CT restaging

PANCREAS CA: ESPAC-1 Randomization Method, 3 Trials

541 eligible patients: Bx (+) ACA pancreas; gross total resection

Physician Selection

285 pts randomized for both chemoRT and adjuvant chemo (2X2 factorial) 68 pts
randomized for
chemoRT only;
(record background
chemo or not)

188 pts
randomized for adjuvant
chemo only
(record background
chemoRT or not)

ESPAC-1: Pooled Data Results

- Improved MS in Pts. Receiving 5-FU/Leuc (19.7 mo) vs Pts. Not Receiving ChT (14.0 mo)
- No Difference in MS Between ChT/RT Pts. (15.5 mo) and Non-ChT/RT Pts. (16.1 mo)

ESPAC-1 PHASE III PANCREAS ACA TRIAL Patient Group and Randomization Methods*

- Eligible patients: ACA pancreas, gross total resection
- Randomization methods: 2x2 factorial design (N=289)
 - Surgery alone (N=69)
 - Postop EBRT+5FU (N=73)
 - Adjuvant 5FU/Leucovorin (N=75)
 - EBRT+5FU, 5FU/Leucovorin (N=72)
- Statistical analysis: Analyzed by intent to treat
 - Adjuvant chemotherapy (N=147) vs none (N=142)
 - Postop EBRT+5FU (N=145) vs none (N=144)

PANCREAS CA: ESPAC-1 Randomization Method, 3 Trials

541 eligible patients: Bx (+) ACA pancreas; gross total resection

Physician Selection

289 pts randomized for both chemoRT and adjuvant chemo (2X2 factorial)

PANCREAS CANCER: ESPAC-1 TRIAL 2x2 Factorial Design

Neoptolemos et al, NEJM 350:1202, 2004

ESPAC-1 PHASE III PANCREAS ACA TRIAL* Tx Methods - Surgery & Adjuvant Therapy

Surgery

- Pancreatico-duodenectomy (head lesions) or total pancreatectomy
- Positive resection margins, 18% of patients
- Adjuvant chemotherapy
 - 5FU (425 mg/m²) Leucovorin (20 mg/m²)
 - 5 consecutive days every 28 d for 6 cycles
- EBRT+5FU
 - 40 Gy/6 wks split course
 - No defined fields, no central audit !!! (dealer's choice)
 - Each center used its own QA standards
 - Concurrent bolus chemo, 5FU 500 mg/m² d 1-3, wk 1 and 3 EBRT

ESPAC 1: ChemoRT vs. No ChemoRT

	# Pts	MS	2 Yr	5 Yr.
		(mo)	S (%)	S (%)
ChemoRT	145	15.9	29	<u>10</u>
No Chemo RT	144	17.9*	41	<u>20</u>

ESPAC 1: ChT vs. No ChT

	# Pts	MS	2 Yr	5 Yr.
		(mo)	S (%)	S (%)
ChT	145	20.1*	40	<u>21</u>
No ChT	144	15.5	30	<u>8</u>

ESPAC-1

2x2 factorial	289
Chemo	147
data available	122 (83%)
received all che	mo <u>61 (41%)</u>
received < 6 cy	cles 40
received none	21
ChemoXRT	145
data available	128 (88%)
received 40 Gy	90 (62%)
received +/- 40	Gy 27
received none	11

Protocol Compliance

	German Rectal	Espac-1	Espac-1
	CAO/ARO/ AIO-94	ChemoRT	ChT
	(n=421)	(n=145)	(n=147)
Unavailable Data	< 2%	12%	17%
RT Dose per Protocol	92%	62%	-
ChT per Protocol	89%	-	41%
No Tx	3% RT	7% RT	
	4% ChT		14% ChT

Local Recurrence: The Unexplained Problem

- First site of recurrence local = 62%
 - 27% Local + distant
- No QA: path, surgical, RT, diagnostic imaging
- Margins + reported to be 18% overall

ESPAC-1 PHASE III PANCREAS ADJUVANT Major Flaws in Study Design

- Randomization methods:
 - 3 separate trials, evaluated as single trial
 - Background therapy allowed 2 of 3 trials
- Restaging studies not performed
- EBRT+5FU
 - 40 Gy/6 wks split course
 - No defined fields, no central audit
 - Each center used its own QA standards

Pancreas Ca: Adjuvant Phase III Trials

Study	Efficacy of 40	Comment
	Gy (S.C.) + 5-FU	
GITSG (1985)	Yes	- Small #'s
		- Slow accrual
EORTC (1999)	No	- Underpowered
		- Periampullary
		- 20% Not tx
ESPAC 1 (2001,	No	-Flaws in Trial
2004)		Design

PANCREATIC CANCER Phase III U.S. GI Intergroup Adjuvant Trial

 RTOG was the Coordinating group of the Intergroup Phase III postop study:

RTOG 9704 5-FU \Rightarrow Chemo RT (5-FU) \Rightarrow 5-FU vs GEM \Rightarrow Chemo RT (5-FU) \Rightarrow GEM

RESECTED PANCREATIC CANCER Phase III U.S. GI Intergroup, RTOG 9704

Initial accrual goal of 330 pts was increased due to excellent accrual (11/mo); 538 pts accrued from Jul 98-Jul 2002

Restaging studies were performed after recovery from surgery

Chemoradiation (CRT)

- EBRT, 50.4 Gy in 28 Fx over 5.5 wks, boost after 45 Gy
- PVI 5FU, 250 mg/m2/d during EBRT

Pre and Post-CRT Chemotherapy

- Arm 1: 3 wks of PVI 5-FU (250 mg/m2/d) before CRT and 2 cycles after CRT (cycle = 4 wk PVI 5FU 250 mg.m2/d; 2 wk rest)
- Arm 2: 1 cycle of gemzar before CRT and 3 cycles after CRT (cycle = 3wks of gemzar @ 1000 mg/m2; 1 wk rest)

Results of RTOG 97-04

- On multivariate analysis <u>3 parameters</u> reached statistical significance:
 - treatment arm (p = 0.025),
 - nodal status (p = 0.003)
 - maximal tumor diameter (p = 0.03).
- Benefits with Gem seen in HOP cancers
- Compared to ESPAC-1, RTOG 97-04 included patients with a more <u>unfavourable distribution of risk factors</u> (resection status, pN-category and largest tumor diameter) but nevertheless resulted in longer survival.

RTOG 9704 442^ R0 or R1 CRT + GEM 20.6 0.033 2008[20] CRT + 5-FU 16.9

Oh...and one more thing

- The improved radiotherapy technique employed in the RTOG trial is reflected in the reduction of local recurrence rates being
 - 25% in the RTOG trial compared to
 - 47% in the GITSG trial
 - And 62% overall in the ESPAC-1 trial.
- In other words ...when we do our job correctly, use IMRT and image guidance, we have less toxicity and better outcomes

Adjuvant Therapy: Pancreas Ca

The value of postoperative EBRT 40 Gy (S.C.) with concurrent ± maintenance 5-FU: Conflicting Results

Adjuvant Therapy: Pancreas Ca

Given this data, what is appropriate tx for patients with potentially resectable pancreatic cancer?

Rationale: Adjuvant Radiation Therapy + ChT

- LF Significant clinical problem: Effective Tx is critical
- Locally Advanced Pancreas Ca: 3 Positive
 Trials for EBRT+ChT
- Well Conducted Adjuvant Trials in Gastric and Rectal Ca: Improved LC and S
- Trials: Contemporary Techniques and Doses (EBRT+ChT)

Pancreas Ca: Adjuvant Tx

Study	#	EBRT	ChT	5 Yr.S	LC
	Pts.	(Gy)		(%)	(%)
Virginia	43	45-54	5-FU	55	-
Mason			CDDP		
(2003)			Interferon		
Hopkins	366	40-57.6	5-FU ± L	20	-
(2000)	132	-	-	9	
Mayo	29	45-54	5-FU	17	93
(1993)	89	-	_	4	
U. Penn	20	>45	5FU+Mit-C	43 #	75
(1991)	53	-	-	35 #	15

Resectable Pancreas Cancer

Phase II/III Trials: Optimize Local Control by Integrate EBRT (Contemporary Techniques and Doses) with Newer Cytotoxics and Target Agents

EORTC (40013-22011): Adjuvant Pancreas Phase II Trial

Resection:

- Gemcitabine + EBRT (50.4 Gy) with Gemcitabine
- Gemcitabine

- Better local control with CRT after Gem, only RO patients entered, good QA
- RTOG o848/EORTC Phase III study will seek to clarify the role of adjuvant CRT, following delivery of fullcourse gemcitabine-based chemotherapy.

Selected Adjuvant Pancreatic Protocols

Study	Design	Arms
GI Intergroup	Randomized	Gem + C-225
	phase II	
	(Adjuvant/	Cape + C-225 + XRT (50.4 Gy / 5.5 weeks)*
	Post-op)	
		Gem + C-225
		Gem + Bev
		Cape + Bev + XRT (50.4 Gy / 5.5 weeks)*
		Gem + Bev
ACOSOG	Phase II	XRT (50.4 Gy / 5.5 weeks) +
Z05031		PVI 5-FU + IFN + CDDP weekly
ACOSOG	Phase II	Gem + Bev
	(Neoadjuvant/	
	Pre-op)	Surgery
		Cape + XRT (45 Gy / 5 weeks) + Bev

Summary

- GITSG/EORTC/ESPAC: Conflicting Results
- Strong Rationale and Support for Adjuvant
 RT and ChT (Concurrently and Maintenance)
- Phase III Trials: Results Pending
- Dr. Neoptolemos (2005): "There may be scope for future studies to investigate more modern chemoradiation techniques"...ya think!!

Neoadjuvant CRT - can't we just get along??

- Kill the microscopic areas of the cancer, get more RO resections and decreased LN metastasis
- Don't have the problems related to hypoxia and long post-op delays
- Less injury as we aren't worried about surgical anastomosis
- Better selection of patients, imaging, biomarkers to tell us which way to go (ca 19-9)

Pancreas Ca: NeoAdjuvant Tx

Study	#	EBRT	ChT	4 Y.S	LC
	Pts.	(Gy)		(%)	(%)
MDAH	20	30/10 Fx	Paclitaxel	28	100
(2002)					
MDAH	35	30/10 Fx	5-FU	23	90
(1999)					
MDAH	39	30-50.4	5-FU	17	93
(1996)					
F.C.C.	11	50.4	5FU+Mit-	40	91
(1995)			\mathbf{C}		

Stereotactic Body Radioablation or SBRA (or SBRT) for LAPC

Reality of Stereotactic Ablation

- Historically, rarely feasible
 - Requires very high dose delivery
 - Toxicity would typically prohibit ablation
 - Only BRACHYTHERAPY techniques
- Historically, required a special circumstance
 - Inherent uptake of iodine by thyroid-like tissue
 - Implantable tumors
- Ablation with radiation was <u>NOT</u> feasible simply didn't have the "soft" or "hard" technology (or QA and expertise not there...aka..ESPAC!!)

SBRT: operational definition

- **★** Stereotactically localized, ultra-high-dose radiotherapy
 - + Given to discrete tumor nodules in <u>extracranial</u> locations
 - + Within a <u>hypofractionated</u> regimen (1-5 treatments)
 - ➤ Unlike typical 6-7 week course of radiotherapy
 - + Analagous to cranial stereotactic radiosurgery (SRS)

Head frame-based cranial SRS

Body frame-based cranial SRS

SBRT-friendly systems now widely available

Spectrum of potential applications of SBRT

- **★** Intensified treatment to a primary cancer
 - + Stage I lung cancer
 - + Primary HCC
 - + Pancreas cancer
 - + Prostate cancer
- ➤ Palliation/control for challenging sites of recurrence
 - + Spinal
 - + Retroperitoneal
 - + Previously irradiated volumes
- **★** Adjuvant systemic cytoreductive therapy
 - + "Radical" treatment for isolated liver, lung, spine, and other mets

High Dose: Conventional Radiation vs. SABR

Postage Stamp SABR 6000 cGy (script dose)
THIS IS A PARADIGM CHANGING DIFFERENCE

Treatment: 60 Gy/3 fractions

Characteristic radiographic findings

Benefits of Stereotactic Ablative Radiotherapy

Outpatient

20-60 Minutes Per Treatment

Entire course of Rx in 1-2 weeks

No Sedation or Anesthesia (painless)

1-5 Treatments qd or qod

Immediate Return
To Activities

Can we do this with LAPC?

Stereotactic Radiotherapy for Unresectable Adenocarcinoma of the Pancreas

Daniel T. Chang, MD¹, Devin Schellenberg, MD², John Shen, BS¹, Jeff Kim, BS¹, Karyn A. Goodman, MD³, George A. Fisher, MD, PhD⁴, James M. Ford, MD⁴, Terry Desser, MD⁵, Andrew Quon, MD⁶, and Albert C. Koong, MD, PhD¹

FIGURE 1. Typical isodose distribution for patients receiving stereotactic body radiotherapy. Twenty-five grays (Gy) are prescribed to the line that completely encompasses the planning target volume. The 12.5-Gy line is kept away from the distal wall of the duodenum and stomach.

FIGURE 3. Actuarial curve of overall survival calculated from date of stereotactic body radiotherapy.

Can it be done safely?

	No. of Patients (%)				
Toxicity	Grade 2	Grade 3	Grade 4	Total	
Acute					
Small bowel ulcer	2	0	0	2 (3)	
Gastric ulcer	0	1	0	1 (1)	
Pain	1	0	0	1 (1)	
Late					
Small bowel ulcer	3	0	0	3 (4)	
Gastric ulcer	0	3	0	3 (4)	
Duodenal stricture	0	1	0	1 (1)	
Biliary stricture	0	2	0	2 (3)	
Small bowel	0	0	1	1 (1)	
perforation					
Total	6 (8)	7 (9)	1 (1)	14 (18)	

Cancer February 1, 2009

Bottom line - volume of duodenum getting high dose is the key!

Fig. 3. Maximum dose predicts duodenal toxicity. Kaplan-Meier analysis of toxicity according to the maximum dose to 1 cm^3 of duodenum (D_{max}).

Adapt based on location of cancer

Fig. 1. Adaptive tolerance-based stereotactic body radiotherapy dose prescription showing graphic depiction of relationship between duodenum and pancreatic tumor (red) used to determine each of three prescribed doses.

Anand Mahadevan, M.D.,

Can we use Ca-19-9 after SBRT?

DEVIN SCHELLENBERG, M.D.

Int. J. Radiation Oncology Biol. Phys., Vol. 72, No. 3, pp. 678–686, 2008

And finally...where does biologics come in to play?

- Tarceva FDA approved with gemzar not very active
- Src kinase inhibitors
- mTOR inhibitors
- DNA repair inhibitors (PARP)
- Protease inhibitors
- Akt/PI₃-K inhibitors

SRC-family kinases in signal transduction

SFK roles in cytoskeletal function

Central role of c-Src in cellular morphology, motility, adhesion, membrane ruffling, and invasive phenotype ('epithelial-tomesenchymal transition')

Dasatinib, a src kinase inhibitor blocks metastatic process

Table 2. Effects of c-Src Targeted siRNA or the Src Family Kinase Selective Inhibitor BMS-354825 on *In Vivo* Growth and Progression of Pancreatic Adenocarcinoma Cells

	Primary Pancreatic Tumors				Metast	Metastases	
	Incidence	Mass (mg)		Lymph Node	Liver		
		Mean	Median	Range			
Vehicle	9/9	1486	1634	(570-2600)	5/9	3/9	
BMS-354825	7/7	754*	606	(370-1900)	1/7*	0/7*	

L3.6pl cells were injected into the pancreas of nude mice (5 x 10⁵ cells/mouse) on Day 0. On Day 14, 200 μl BMS-354825 (15 mg/kg) or an equal volume of citrate buffer vehicle was administered by oral gavage. Treatments continued daily for 28 days. Mice were sacrificed on Day 42 and evaluated for primary pancreatic tumors and liver and lymph node metastases.

^{* =} P<0.05, relative to controls

... so does the AZD Src inhibitor

Fig. 7 Dose-dependent inhibition of L3.6pl human pancreatic cancer cell migration by AZM475271 (modified Boyden chamber assay). *, P < 0.001; **, P < 0.0004 (versus fibronectin stimulation).

From Yezhelyev MV, et al. Clin Cancer Res 2004

Table 1 In vivo Efficacy of AZM475271 +/- Gemcitabine for Human Pancreatic Cancer in Nude Mice

	Pancreatic tumor		Metastases† (N)		
Treatment	Turnor incidence * (N)	Median (range) tumor volume (rnm³)	Lymph node	Liver	Median (range) body weight (g)
Saline (control)	5/5	1359 (921-1989)	5/5	3/5	24 (21-25)
Gemcitabine (twice weekly, 100 mg/kg)	5/5	393 (297–471); P < 0.0004 ‡	2/5	1/5	23 (20–23)
AZM475271 (50 mg/kg/d)	9/9	827 (603-879); P < 0.002 ‡	9/9	0/9	22 (22-24)
AZM475271 (50 mg/kg/d) + gerncitabine (twice weekly, 100 mg/kg)	8/8	$124 (63-363); P < 0.0001 \ddagger; P < 0.002 $	0/8; $P < 0.001$ ‡	0/8	18 (17–21)

^{*} Data represent number of mice with tumors/number of mice receiving injections.

[†] Data represent number of mice with metastases/number of mice receiving injections.

[‡] Compared with controls.

[§] Compared with gemcitabine alone (unpaired Student's t test).

Src expressed in pancreatic cancer

c-Src overexpression was found in 13 of 13 clinical samples of pancreatic cancer (but not in normal tissues) and in 14/17 cell lines

Lutz MP, et al. Bioch Biophys Res Comm 1998

So...how could we use it?

Still a ways to go - but he who dares...wins! Thanks

Impossible is nothing

