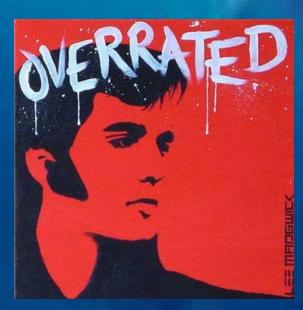
Non-Invasive Ventilation: Overrated

August 24, 2009

Grand Rounds

University of Colorado Denver

Department of Surgery


Max V. Wohlauer, MD

"Non-invasive ventilation: BiPAP or Buy Crap?" -Jim Haenel, RRT, Ventilator Guru.



What is non-invasive positive pressure ventilation (NIV, NPPV)?

NIV (NPPV) is mechanical ventilation using techniques that do not require an endotracheal airway.

- •CPAP=PEEP
- •BiPAP=CPAP + PSV
- •Bilevel (bilevel CPAP) = ARPV w/ spontaneous breathing

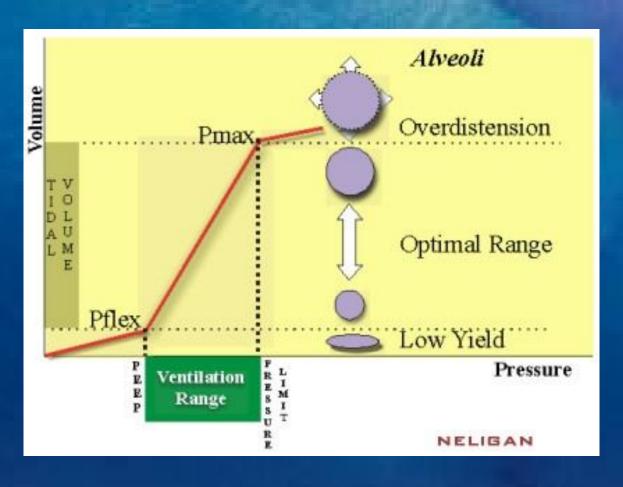
CPAP vs BIPAP

CPAP does not actively assist inspiration

"They tried to switch me to BIPAP but I couldn't tolerate the warm humidified component of the apparatus...made me feel like I was drowning." Katie Bakes, MD

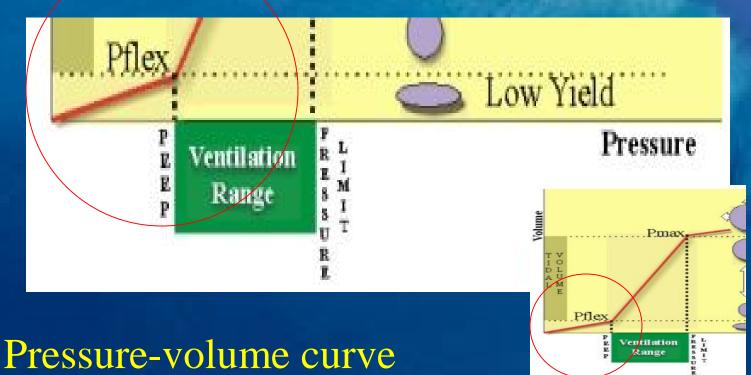
Why Low Lung Volumes are Bad

- •The Functional Residual Capacity (FRC) is the lung's physiologic reserve
- Loss of chest wall or lung compliance causes reduced FRC.


What is the Closing Volume?

- •The closing volume (CV) is the point at which dynamic compression of the airways begins.
- •The CV increases with age, smoking, lung disease, and body position (supine>erect).

What does NIV do?


- Decreases work of breathing
- •Recruits alveoli to improve FRC
- Increases closing volume
- Optimizes lung compliance
- •Assists with ventilation, poor device for oxygenation

How does NIV work?

www.icmtutorials.com

Positive pressure: optimizing ventilation

Indications for NIV

- COPD and CHF exacerbations
- •Pulmonary infiltrates in immunocompromised patients
- •Weaning of previously intubated stable patients with chronic obstructive pulmonary disease.
- •To palliate symptoms in terminally ill patients

Hill N. Lancet 2009; 374: 250-59

Benefits of NIV

- Decreased work of breathing in select patients
- •Improved gas exchange in select patients
- •Avoid complications of intubation; decreased risk of VAP

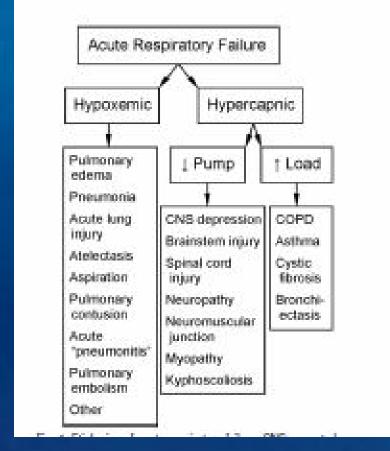
Hill N. Lancet 2009; 374: 250-59

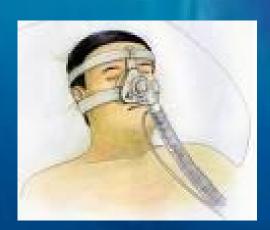
Pieracci FM. Am Surg 2007; 73:419-432

- Unable to fit mask
- •Respiratory arrest
- Untrained staff

NIV: Contraindications

- Patient unable to protect airway
- •Swallowing Impairment
- •Hemodynamic Instability (Systolic BP < 90 mmHg)
- •Severe Acidemia (pH < 7.25)
- Copious Secretions
- Agitation
- Recent UGI Surgery
- •MOF




- Epistaxis
- Barotrauma (Pneumothorax)
- Facial and Skull Trauma (Pneumocephalus)
- Obtunded Patient

Crummy M. Naughton T. Internal Medicine Journal. 2007; 112–118.

Respiratory Distress

Failure to ventilate or failure to oxygenate?



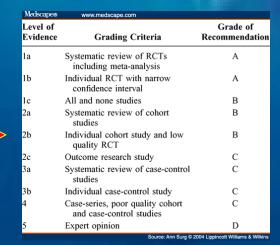
Keenan SP, Mehta S. Respiratory Care. 2009; 54: 116-26.

- Acute Respiratory Distress Syndrome/ ALI
- Pulmonary contusion
- Pneumothorax
- Pulmonary embolism
- Aspiration
- Pneumonia
- Pulmonary Edema
 - ➤ Congestive heart failure
 - > Iatrogenic fluid overload

- Obstructive
- **>**COPD
- >Mucus plugging
- Altered mental status/ CNS injury
- Pain
- >Rib fractures
- ➤ Abdominal/Thoracic surgery
- Chest wall trauma

Benefits and risks of noninvasive ventilation

A prospective observational study in 70 ICUs


1076 patients requiring ventilatory support.

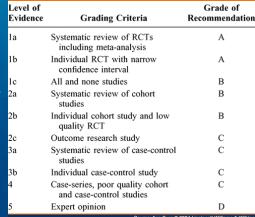
•Failure associated with

increased mortality

for de novo (non-CHF, non-COPD) patients.

•Nosocomial pneumonia rates were not statistically different in the NIV and ETI groups

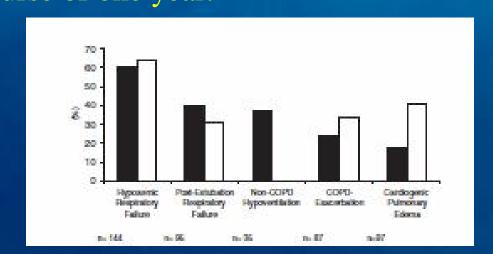
Demoule A, Girou E, Richard JC, et al.


Intensive Care Med 2006; 32: 1756-65.

Complications of Noninvasive Ventilation in Acute Care

Systematic Review of RCT's from 1989-2007 grouped by etiology of respiratory failure

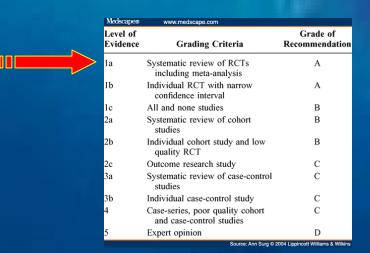
•Conclusion:


If NIV is inappropriately applied for too long, the consequences may lead to death, presumably due to excessive delay of intubation.

Source: Ann Surg © 2004 Lippincott Williams & Wilkins

NIV in acute respiratory failure outside clinical trials: Experience at the Massachusetts General Hospital.

Prospective observational study consisting of 449 patients over the course of one year.


Grade of Systematic review of RCTs including meta-analysis Individual RCT with narrow confidence interval All and none studies Systematic review of cohort В studies Individual cohort study and low quality RCT Outcome research study Systematic review of case-control studies Individual case-control study Case-series, poor quality cohort and case-control studies

60% intubation rate with an associated 64% mortality.

NIV for Acute Respiratory Failure: The Randomized Controlled Trials

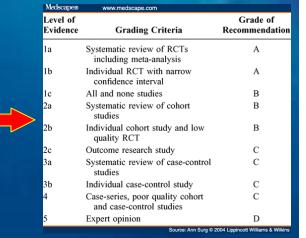
Systematic Review of RCT's from 1989-2007 grouped by etiology of respiratory failure

- •Conclusion: NIV for ARF is supported by strong evidence in COPD.
- •For patients with pneumonia or ALI RCT-level evidence is lacking or does not suggest benefit.

Noninvasive ventilation for respiratory failure after extubation.

Multicenter RCT consisting of 221 patients, trial stopped early.

•Conclusion: noninvasive positive-pressure ventilation does not prevent reintubation or reduce mortality in unselected patients who have respiratory failure after extubation.


Medscape®	www.medscape.com	
Level of Evidence	Grading Criteria	Grade of Recommendation
1a	Systematic review of RCTs including meta-analysis	A
1b	Individual RCT with narrow confidence interval	A
1c	All and none studies	В
2a	Systematic review of cohort studies	В
2b	Individual cohort study and low quality RCT	В
2c	Outcome research study	C
3a	Systematic review of case-control studies	С
3b	Individual case-control study	C
4	Case-series, poor quality cohort and case-control studies	С
5	Expert opinion	D
	Source: Ann Surg @ 2	004 Lippincott Williams & Wilkins

Treatment of acute hypoxemic respiratory insufficiency with CPAP

RCT examined patients with hypoxemic respiratory failure.

Treatment failed to reduce:

- the intubation rate, hospital mortality or ICU length of stay
- •A higher number of adverse events occurred with CPAP treatment (18 vs 6; P=0.01) including cardiac arrest

Delclaux C, et. al. Treatment of acute hypoxemic nonhypercapnic respiratory insufficiency with CPAP delivered by a face mask: A randomized controlled trial. JAMA 2000; 284:2352–2360.

Continuous positive airway pressure for treatment of postoperative hypoxemia.

RCT: 209 patients with severe hypoxemic respiratory failure

after abdominal surgery

•Results: decreased intubation rate and PNA in patients with severe hypoxemia (P:F < 300)

Medscape®	www.medscape.com	
Level of Evidence	Grading Criteria	Grade of Recommendation
1a	Systematic review of RCTs including meta-analysis	A
1b	Individual RCT with narrow confidence interval	A
1c	All and none studies	В
2a	Systematic review of cohort studies	В
2b	Individual cohort study and low quality RCT	В
2c	Outcome research study	C
3a	Systematic review of case-control studies	С
3b	Individual case-control study	C
4	Case-series, poor quality cohort and case-control studies	С
5	Expert opinion	D
	Source: Ann Surg @ 2	004 Lippincott Williams & Wilkins

Conclusion: study not generalizable

Continuous positive airway pressure for treatment of postoperative hypoxemia.

RCT: 209 patients with severe hypoxemic respiratory failure

after abdominal surgery

•Finding: Hypoxemic respiratory failure "" caused by atelectasis.

Conclusion: did not compare standard medical therapies to CPAP.

Medscape⊗	www.medscape.com	
Level of Evidence	Grading Criteria	Grade of Recommendation
1a	Systematic review of RCTs including meta-analysis	A
1b	Individual RCT with narrow confidence interval	A
1c	All and none studies	В
2a	Systematic review of cohort studies	В
2b	Individual cohort study and low quality RCT	В
2c	Outcome research study	C
3a	Systematic review of case-control studies	С
3b	Individual case-control study	C
4	Case-series, poor quality cohort and case-control studies	С
5	Expert opinion	D
	Source: Ann Surg © 2	004 Lippincott Williams & Wilkins

Venturi mask at 50% 02 not standard therapy for atelectasis.

Indications for NIV: Best Use

Acute or acute on chronic ventilatory failure, PaCO2>45 mm Hg, pH<7.35

Plant PK, Owen JL, Elliott MW. Lancet 2000; 355: 1931–35.

Is NIV cost-effective?

Table 6. Diagnosis-Related Groups and National Average Payments

Current DRG	Former DRG	Description	Payment* (\$)	Type of Ventilation
189	87	Pulmonary edema and respiratory failure	6,780	NIV
190-192	88	Chronic obstructive pulmonary disease	5,528	NIV
208	566	Respiratory system diagnosis: intubation and ventilatory support < 96 h	11,150	Intubation
207	565	Respiratory system diagnosis: ventilatory support ≥ 96 h	25,429	Intubation
004	483	Tracheostomy, except for face, mouth, and neck diagnoses	56,694	Tracheostomy and mechanical ventilation

^{*} Payment assumes a 2008 standardized amount of \$4,963.64, a hospital with a wage index of 1.000, and does not include capital payment or any add-on payments for teaching, disproportionate share, et cetem. The amount does not take into account the current blended-payment formula, under which payment is based on both old and new Diagnosis-Related Groups (DRGs).

NIV: in the field and ED

"When Littleton Fire Rescue arrived, I had a pulse ox of 55% and HR around 200. They gave me CPAP in the ambulance, and it was the first time I felt like I might actually live."

Katie Bakes, MD with CPAP

NIV in the SICU? No thanks!

- •NIV requires holding tube feeds due to aspiration risk.
- •NIV is not cost-effective.
- •Evidence does not support routine use in abdominal surgery patients post-op.
- •Evidence advises against use in patient with ALI/ARDS.
- •Using NIV to prevent reintubation is not recommended and may even be dangerous.

Take Home Points

- 1. For respiratory failure in the SICU treat the patient not the symptom.
- 2. CPAP/BIPAP: good for ventilation, poor oxygenation device.
- 3. NIV use has potential for harm in patients with ALI/ARDS.

SOURCES

- Nava S, and Hill N. Non-invasive ventilation in acute respiratory failure. Lancet 2009; 374: 250–59
- Pieracci FM, and Barie P. Strategies in the prevention and management of ventilator-associated pneumonia. Am Surg 2007; 73:419-432.
- Demoule A, Girou E, Richard JC, et al. Benefi ts and risks of success or failure of noninvasive ventilation. Intensive Care Med 2006; 32: 1756–65.
- Plant PK, Owen JL, Elliott MW. A multicentre randomised controlled trial of the early use of non-invasive ventilation in acute exacerbation of chronic obstructive pulmonary disease on general respiratory wards. Lancet 2000; 355: 1931–35.
- Antonelli M, Conti G, Rocco M, et al. A comparison of noninvasive positive-pressure ventilation and conventional mechanical ventilation in patients with acute respiratory failure. N Engl J Med 1998; 339: 429–35. dynamics durino non invasive pressure support ventilation: a bench study. Intensive Care Med 2001; 27: 1887–91.
- Peter JV, Moran JL, Phillips-Hughes J, Warn D. Noninvasive ventilation in acute respiratory failure—a metaanalysis update. Crit Care Med 2002; 30: 555–62. Crit Care Med 2003; 31: 468–73.
- Antonelli M, Conti G, Esquinas A, et al. A multiple-center survey on the use in clinical practice of noninvasive ventilation as a first-line intervention for acute respiratory distress syndrome. Crit Care Med 2007; 35: 18–25.
- Delclaux C, et. al. Treatment of acute hypoxemic nonhypercapnic respiratory insufficiency with continuous positive airway pressure delivered by a face mask: A randomized controlled trial. JAMA 2000; 284:2352–2360 27.

SOURCES cont.

- Crummy M. Naughton T. Non-invasive positive pressure ventilation for acute respiratory failure: justified or just hot air? Internal Medicine Journal. 2007; 112–118.
- Esteban A, et. al. Noninvasive positive-pressure ventilation for respiratory failure after extubation. NEJM. 2004; 350;2452-60.
- Schettino G, Altobelli N, Kacmarek RM. Noninvasive positive-pressure ventilation in acute respiratory failure outside clinical trials: Experience at the Massachusetts General Hospital. Crit Care Med. 2008; 36, 441-47.
- Gay P. Complications of Noninvasive Ventilation in Acute Care Respiratory Care. 2009;54(2):246–257
- Keenan SP, Mehta S. Noninvasive Ventilation for Patients Presenting With Acute Respiratory Failure: The Randomized Controlled Trials.Respiratory Care. 2009; 54: 116-26.
- Squadrone V, Coha M, Cerutti E, et al. Continuous positive airway pressure for treatment of postoperative hypoxemia: a randomized controlled trial. JAMA. 2005;293:589–595.
- Pasquina P, Tramer MR, Granier J, et al. Respiratory physiotherapy to prevent pulmonary complications after abdominal surgery: A systematic review. Chest. 2006;130:1887–1899.