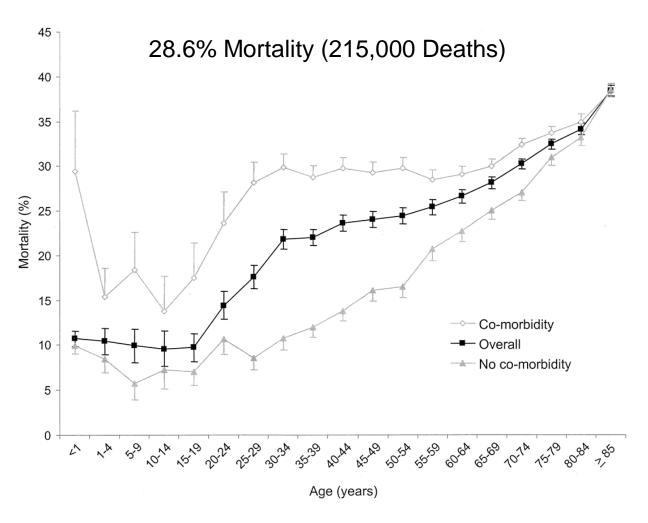
Special Article _____

Surviving Sepsis Campaign: International guidelines for management of severe sepsis and septic shock: 2008


R. Phillip Dellinger, MD; Mitchell M. Levy, MD; Jean M. Carlet, MD; Julian Bion, MD; Margaret M. Parker, MD; Roman Jaeschke, MD; Konrad Reinhart, MD; Derek C. Angus, MD, MPH; Christian Brun-Buisson, MD; Richard Beale, MD; Thierry Calandra, MD, PhD; Jean-Francois Dhainaut, MD; Herwig Gerlach, MD; Maurene Harvey, RN; John J. Marini, MD; John Marshall, MD; Marco Ranieri, MD; Graham Ramsay, MD; Jonathan Sevransky, MD; B. Taylor Thompson, MD; Sean Townsend, MD; Jeffrey S. Vender, MD; Janice L. Zimmerman, MD; Jean-Louis Vincent, MD, PhD; for the International Surviving Sepsis Campaign Guidelines Committee

Epidemiology of Severe Sepsis

- 1995 Hospital
 Discharges 6.6 million
 7 large states
- Census, CDC, HCFA, AHA
- ICD-9 Sepsis
- Validation 5 hospitals

- 751,000 cases
- 3.0 / 1000 population
- 2.26 / 100 hospital discharges
- 161,000 (21%) surgery-related
- 51.1% ICU
- 17.3% IMCU / CCU

Mortality Severe Sepsis

Angus Crit Care Med 2001

Crit Care Med 2008: 36: 296-327

- A. Initial Resuscitation Goals at 6 hrs
 - Hypotension or elevated lactate
 - CVP 8-12 mm Hg
 - MAP ≥ 65 mm Hg
 - Urine \geq 0.5 cc/kg/hr
 - Central vein (SVC) or mixed venous Saturation ≥70% or 65%
 - At 6 hrs $ScvO_2 \le 70\%$ (or $SVO_2 < 65\%$) despite CVP 8-12 mmHg
 - Transfuse if Hct < 30%
 - Dobutamine 2.5-20mcg/kg/min

Grade 2C

Grade 1C

Stop! What are these grades?

Table 1. Determination of the quality of evidence

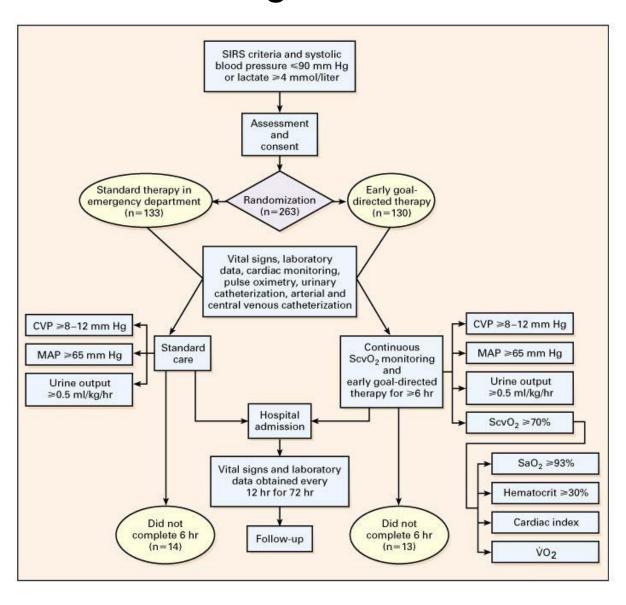
- Underlying methodology
 - A. RCT
 - B. Downgraded RCT or upgraded observational studies
 - C. Well-done observational studies
 - D. Case series or expert opinion
- Factors that may decrease the strength of evidence
 - Poor quality of planning and implementation of available RCTs, suggesting high likelihood of bias
 - 2. Inconsistency of results (including problems with subgroup analyses)
 - 3. Indirectness of evidence (differing population, intervention, control, outcomes, comparison)
 - 4. Imprecision of results
 - 5. High likelihood of reporting bias
- Main factors that may increase the strength of evidence
 - 1. Large magnitude of effect (direct evidence, RR >2 with no plausible confounders)
 - 2. Very large magnitude of effect with RR >5 and no threats to validity (by two levels)
 - 3. Dose-response gradient

RCT, randomized controlled trial; RR, relative risk.

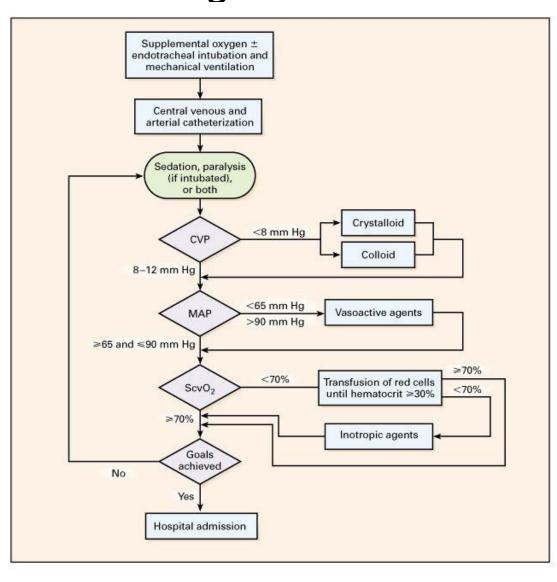
Sackett Chest 1989; 95: 2S-4S

Table 2. Factors determining strong vs. weak recommendation

What Should Be Considered	Recommended Process			
Quality of evidence	The lower the quality of evidence, the less likely a strong recommendation			
Relative importance of the outcomes	If values and preferences vary widely, a strong recommendation becomes less likely			
Baseline risks of outcomes	The higher the risk, the greater the magnitude of benefit			
Magnitude of relative risk, including benefits, harms, and burden	Larger relative risk reductions or larger increases in relative risk of harm make a strong recommendation more or less likely, respectively			
Absolute magnitude of the effect	The larger the absolute benefits and harms, the greater or lesser likelihood, respectively, of a strong recommendation			
Precision of the estimates of the effects	The greater the precision, the more likely a strong recommendation			
Costs	The higher the cost of treatment, the less likely a strong recommendation			


GRADE

- Grade 1 strong
- Grade 2 weak


- Quality of evidence
 - A high
 - B moderate
 - C low
 - D very low

GRADE working group 2004; 328: 1490-1498

Early Goal Directed Resuscitation Rivers et al New Engl J Med 2001

Early Goal Directed Resuscitation Rivers et al New Engl J Med 2001

Early Goal Directed Resuscitation Rivers et al New Engl J Med 2001

TABLE 3. KAPLAN-MEIER ESTIMATES OF MORTALITY AND CAUSES OF IN-HOSPITAL DEATH.*

Variable	Standard Therapy (N=133)	EARLY GOAL-DIRECTED THERAPY (N=130)	RELATIVE RISK (95% CI)	P VALUE
	no. (⁶	%)		
In-hospital mortality†				
All patients	59 (46.5)	38 (30.5)	0.58(0.38-0.87)	0.009
Patients with severe sepsis	19 (30.0)	9 (14.9)	0.46(0.21-1.03)	0.06
Patients with septic shock	40 (56.8)	29 (42.3)	0.60(0.36-0.98)	0.04
Patients with sepsis syndrome	44 (45.4)	35 (35.1)	0.66(0.42-1.04)	0.07
28-Day mortality†	61 (49.2)	40 (33.3)	0.58(0.39-0.87)	0.01
60-Day mortality†	70 (56.9)	50 (44.3)	0.67(0.46-0.96)	0.03
Causes of in-hospital death‡	\$240 *CO.COSS*	200000000000000000000000000000000000000		
Sudden cardiovascular collapse	25/119 (21.0)	12/117 (10.3)	22 <u>-3</u> 2	0.02
Multiorgan failure	26/119 (21.8)	19/117 (16.2)	23 <u>—</u> 2	0.27

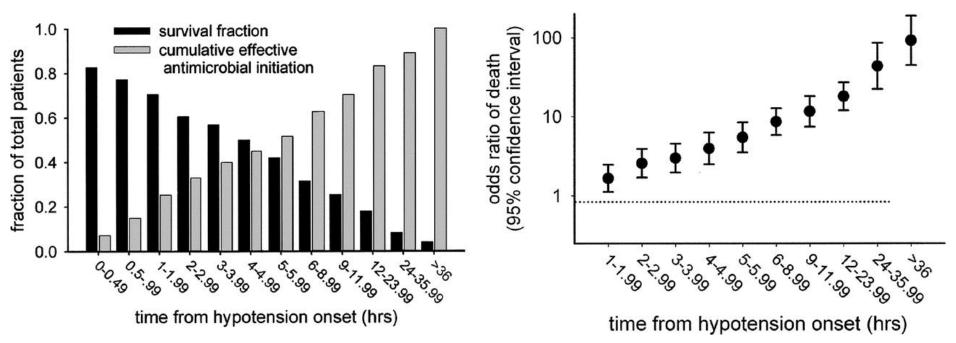
^{*}CI denotes confidence interval. Dashes indicate that the relative risk is not applicable.

[†]Percentages were calculated by the Kaplan-Meier product-limit method.

[‡]The denominators indicate the numbers of patients in each group who completed the initial six-hour study period.

Crit Care Med 2008: 36: 296-327

- B. Diagnosis
 - Culture before antibiotics
 - 2 blood
 - One via peripheral puncture
 - One via line
 - Other sites as appropriate
 - Diagnostic Studies
 - Imaging
 - Sample likely sources


Grade 1C

Grade 1C

Crit Care Med 2008: 36: 296-327

- C. Antibiotic Therapy
 - Start within 1 hr of recognizing severe sepsis (1D) and septic shock (1B)
 - One or more antibiotics with coverage for likely organisms
 Grade 1C
 - Reassess antibiotics at 48 hrs
 Grade 1C
 - Duration typically 7-10 days (longer if slow response, undrainable abscess, immunodeficiency)
 Grade 1D
 - If syndrome is due to noninfectious cause stop antibiotics
 Grade 1D

Duration of hypotension and timing of antibiotics

2,731 adult patients with septic shock

Each hour of delay over 6 was associated with an average decrease in survival of 7.6%.

In multivariate analysis (including APACHE II score and therapeutic variables), time to initiation of antimicrobial therapy was the single strongest predictor of outcome.

Kumar et al Crit Care Med 2006; 34: 1589-1596

Crit Care Med 2008: 36: 296-327

- D. Source Control
 - Make a specific diagnosis as rapidly as possible
 - Drain abscess
 - Remove infected devices
 Grade 1C

Crit Care Med 2008: 36: 296-327

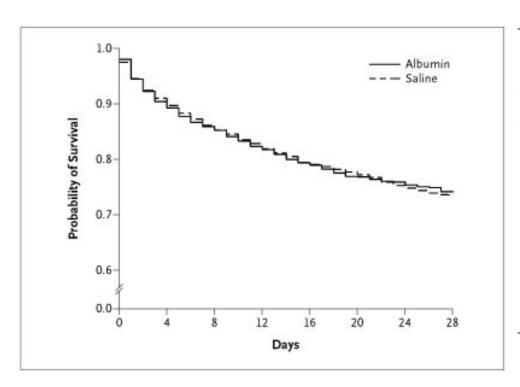
- E. Fluid therapy
 - Crystalloid vs colloid. There is no evidence based support for one over the other

Grade 1B

Crystalloid vs. colloid Meta-analyses

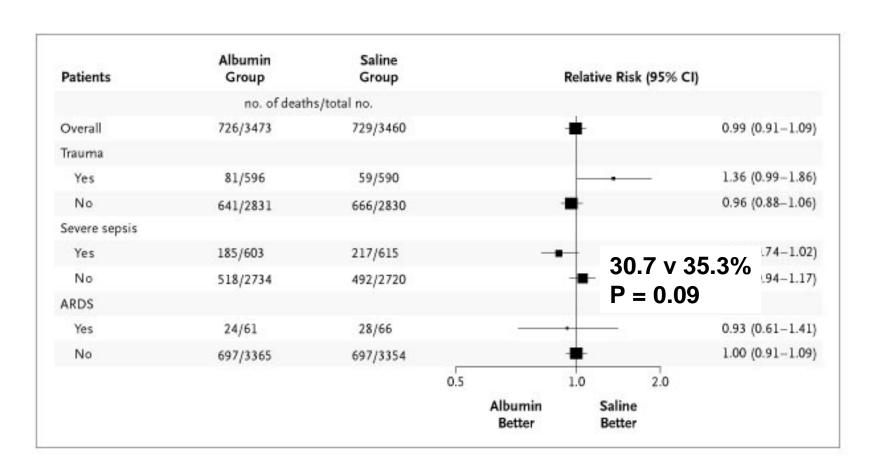
- Choi et al Crit Care Med 1999; 27: 200-210
- Cook et al Ann Int Med 2001; 135: 205-208
- Schierhout et al BMJ 1998; 316:961-964
- Perel and Roberts Cochrane Database
 Syst Rev 2007

Saline vs Albumin Fluid Evaluation Study (SAFE)


- New Eng J Med 2004
- 6997 patients ANZICSCTG
- Maintenance fluids, replacement fluids, nutrition, and blood products discretion of the clinicians.
- Patients require fluid administration to maintain or increase intravascular volume.
- 4 percent albumin (Albumex, CSL) or normal saline.

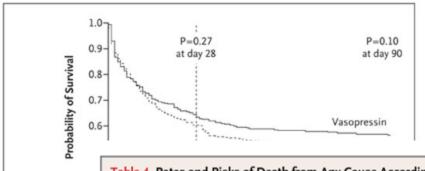
Variable	Albumin Group		Saline Group		P Value†
	No. of Patients	Value	No. of Patients	Value	
Study fluid (ml)					
Day 1	3410	1183.9±973.6	3418	1565.3±1536.1	< 0.001
Day 2	3059	602.7±892.7	3068	954.0±1484.4	< 0.001
Day 3	2210	268.0±554.5	2202	348.3±753.5	0.03
Day 4	1686	192.3±427.0	1664	228.6±642.6	0.57
Nonstudy fluid (ml)					
Day l	3392	1459.4±1183.2	3405	1505.6±1254.3	0.30
Day 2	3051	2615.9±1372.5	3057	2707.3±1435.7	0.009
Day 3	2199	2618.5±1346.5	2191	2660.9±1319.3	0.15
Day 4	1680	2691.5±1228.7	1656	2707.7±1255.4	0.36
Packed red cells (ml)					
Day 1	3411	97.8±360.7	3415	71.7±296.8	< 0.001
Day 2	3066	106.5±321.4	3074	61.1±235.2	< 0.001
Day 3	2217	59.8±225.5	2210	49.5±190.8	0.30
Day 4	1692	43.6±167.5	1668	46.0±189.0	0.77
Net positive fluid balance (ml)					
Day 1	3363	1543.6±1619.7	3382	1990.5±2061.7	< 0.001
Day 2	3044	1015.3±1826.9	3052	1505.1±2215.9	< 0.001
Day 3	2190	422.1±1633.3	2182	553.0±1732.3	0.007
Day 4	1671	137.2±1491.0	1649	155.7±1650.6	0.70
Mean arterial pressure (mm Hg)					
Day 1	3406	81.4±14.4	3408	80.9±14.5	0.14
Day 2	3068	84.4±15.1	3075	84.2±15.7	0.49
Day 3	2215	87.2±15.3	2209	86.9±16.1	0.62
Day 4	1688	88.3±15.9	1666	88.4±16.3	0.87
Heart rate (beats/min)					
Day 1	3398	88.0±20.2	3406	89.7±20.8	< 0.001
Day 3	3071	88.5±19.5	3075	89.5±19.2	0.06
Day 3	2216	88.8±19.1	2213	89.7±18.8	0.10
Day 4	1691	89.5±18.9	1668	89.9±18.5	0.52
Central venous pressure (mm Hg)					
Day 1	2204	11.2±4.8	2270	10.0±4.5	< 0.001
Day 2	2095	11.6±4.9	2135	10.4±4.3	< 0.001
Day 3	1531	11.4±4.8	1589	10.7±4.4	< 0.001
Day 4	1221	11.1±4.8	1230	10.5±4.4	< 0.001
Serum albumin (g/liter)					
Day 1	2081	28.7±7.0	2061	24.7±6.5	< 0.001
Day 2	2708	30.8±6.4	2703	24.5±5.9	< 0.001
Day 3	1921	30.0±6.4	1905	23.6±5.6	< 0.001
Day 4	1498	29.0±6.2	1478	23.1±5.5	< 0.001

[?] Biologic significance


^{*} Plus-minus values are means \pm SD. $\dot{\gamma}$ P values are for the comparison between the two means for each variable at each time point.

SAFE Trial

Dead	20.9% vs 21.1%
Alive is ICU	3.2 vs. 2.5%
Alive in hospital	22.8 vs. 24.5%
ICU LOS	6.5 vs 6.2 d
Hosp LOS	15.3 vs 15.6 d
Vent	4.5 vs 4.3 d
New organ failure	47.3 vs 46.7%
Death Trauma	13.6 vs 10.0%
Death Sepsis	30.7 vs 35.3%
Death ARDS	39.3 vs 42.4%


Relative Risk Death Any Cause Among 6 predefined subgroups

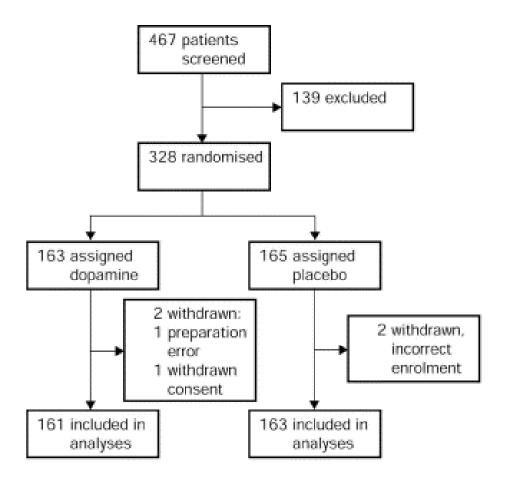
Crit Care Med 2008: 36: 296-327

- F. Vasopressors
 - $-MAP \ge 65$ Grade 1C
 - When appropriate fluid does not maintain pressure, use a vasopressor
 - Norepi or dopamine is first choice Grade 1C
 - Epi, phenylephrine and vasopressin are not first line
 - VP can be added to NorepiGrade 2C
 - Epi is the 1st choice of alternatives to Norepi or Dopa
 - Low dose dopa should not be used for renal protection
 Grade 1A
 - Arterial line Grade 1D

Vasopressin versus Norepinephrine Infusion in Patients with Septic Shock

No. at Risk Vasopressin Norepinephrin 778 pts on > 5 mcg/min NE
• NF v VP

Table 4. Rates and Risks of Death from Any Cause According to the Severity of Shock. [∞]					
Stratum	Norepinephrine Group	Vasopressin Group	P Value†	Absolute Risk Reduction (95% CI)	Relative Risk (95% CI)
	no./total no. (%)			%	
More severe septic shock					
28-day mortality	85/200 (42.5)	88/200 (44.0)	0.76	-1.5 (-11.2 to 8.2)	1.04 (0.83 to 1.3)
90-day mortality	105/199 (52.8)	103/199 (51.8)	0.84	1.0 (-8.8 to 10.8)	0.98 (0.81 to 1.18)
Less severe septic shock					
28-day mortality	65/182 (35.7)	52/196 (26.5)	0.05	9.2 (-0.1 to 18.5)	0.74 (0.55 to 1.01)
90-day mortality	83/180 (46.1)	69/193 (35.8)	0.04	10.4 (0.4 to 20.3)	0.78 (0.61 to 0.99)


^{*} Patients with more severe septic shock were defined as those who required at least 15 μ g of norepinephrine per minute or the equivalent at the time of randomization. Those with less severe septic shock were defined as those who required 5 to 14 μ g of norepinephrine per minute or the equivalent at the time of randomization.

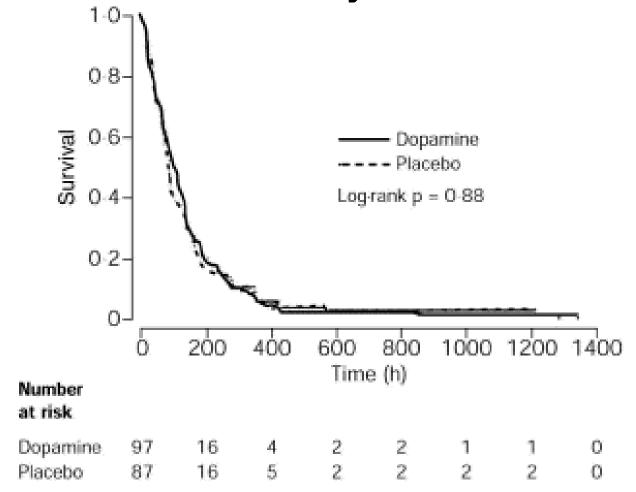
Severe \geq 15 mcg/min NE (0.21mcg/kg/min-70kg)

[†] Two-sided P values are based on Pearson's chi-square test.

Renal-dose Dopamine

- Low-dose dopamine in patients with early renal dysfunction: a placebo-controlled randomised trial. The Lancet 2000; 356: 2139-2143.
- Australian and New Zealand Intensive Care Society (ANZICS) Clinical Trials Group
- 23 ICUs

Bellomo et al Lancet 2000; 356: 2139-2143


Characteristic	Dopamine (n=161)	Placebo (n=163)
Demography		
Age (years)*	63 (15)	61 (17)
Male/female†	94/67	102/61
Condition		
Admission APACHE II score*	21 (6)	21 (8)
Admission SAPS II score*	43 (14)	45 (16)
APACHE II score at start of infusion*	18 (7)	18 (7)
SAPS II score at start of infusion*	40 (15)	41 (15)
Shock‡ at start of infusion†	93	102
On ventilator at start of infusion?	138	141
Type of admission†		
Respiratory, medical	32	25
General, surgical	30	35
Vascular, surgical	19	16
Cardiac, surgical	12	12
Multiple trauma	8	14
Cardiac, medical	4	12
General, medical	13	6
Haematology/oncology	8	7
Gastrointestinal, medical	7	6
Thoracic, surgical	5	6
Other, medical	8	9
Other, surgical	15	15
Renal characteristics		
Pre-renal renal dysfunction;	152	154
Nephrotoxic component†	9	9
Baseline creatinine (nmol/L)*	183 (85)	182 (81)
Baseline urea (mmol/L)*	$14 \cdot 3 (7 \cdot 5)$	$14 \cdot 4 (7 \cdot 1)$
Oliguria†	109	113
Haemodynamics		
Mean arterial pressure (mm Hg)*	80 (15)	80 (16)
Central venous pressure (mm Hg)	14 (8)	13 (7)

Effect of Dopa on Markers of Renal Function

	Dopamine (n=161)	Placebo (n=163)	Difference (95% CI)
Serum concentrations*			
Peak creatinine (µmol/L)	245 (144)	249 (147)	4 (-28 to 36)
Peak urea (mmol/L)	20 (10)	23 (12)	3(-0.8 to 6.8)
Increase in creatinine (µmol/L)	62 (107)	66 (108)	4 (-21 to 29)
Increase in urea (mmol/L)	6 (8)	7 (9)	1((-1 to 3)
Number of patients with event Creatinine concentration >300 mmol/L Renal replacement therapy	56 35	56 40	0 (-16 to 16) 5 (-10 to 20)
Unine output (mL/h)*			
Baseline	37 (40)	50 (59)	13 (-21 to 27)
After 1 h	71 (81)	72 (77)	1 (-20 to 22)
After 24 h	96 (101)†	92 (72)†	4 (-19 to 27)
After 48 h	99 (83)†	109 (95)†	10 (-11 to 31)

Loop diuretics administered to 90 pts in each group Furosemide Dose 192 mg Dopa vs 268 mg Placebo

Time to Recovery of Renal Function

No difference in secondary outcome: Survival, Ventilation, arrythmias, LOS

Lancet 2000

Crit Care Med 2008: 36: 296-327

- G. Inotropic Therapy
 - Low cardiac output despite adequate fluid administration treat with Dobutamine. If hypotensive combine with vasopressor

Grade 1C

 A strategy to reach a predefined cardiac output is not recommended.

Grade 1B

Prospective Trials Supranormal Resuscitation

				Mortalit	у
Author	Patients	Time	N	Control	Supranormal
		Course			
Shoemaker, 1988	Surgical	Early	88	36	4
Tuhschmidt, 1989	Sepsis	Late	51	72	50
Gutierrez, 1992	Critical III,				
	NI pHi	Early	141	58	42
	LowpHi	Late	119	63	64
Flemming, 1992	Trauma	Early	67	44	24
Boyd, 1993	Surgical	Early	107	22	6
Yu, 1993	Critical III	Late	67	34	34
Hayes, 1994	Critical III	Late	100	30	50
Bishop, 1995	Trauma	Early	115	37	18
Gattinoni, 1995	Critical III	Late	505	48	49
Yu, 1998	Surgery, Sepsis	Late			
	50-75 yrs		66	52	21
	> 75 yrs		39	61	57
McKinley, 2002	Trauma	Early	36	89	72

Crit Care Med 2008: 36: 296-327

H. Steroids

 IV hydrocortisone should be given only to adult septic shock patients after it has been confirmed that their blood pressure is poorly responsive to fluid resuscitation and vasopressor therapy

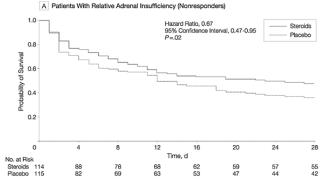
Grade 2C

 We suggest that the ACTH stimulation test not be used to identify the subset of adults with septic shock who should receive hydrocortisone

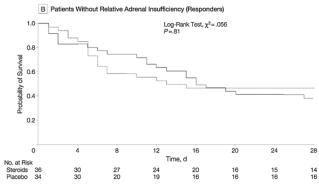
Grade 2B

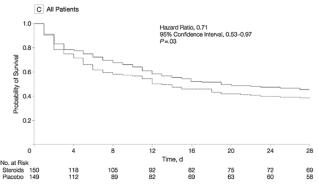
Effect of Low Doses of Hydrocortisone and Fludrocortisone on Mortality in

Septic Shock


Annane JAMA 2002

Hydrocortisone 50 mg q 6 hrs + Fludrocortisone 50 μg q d 7 days

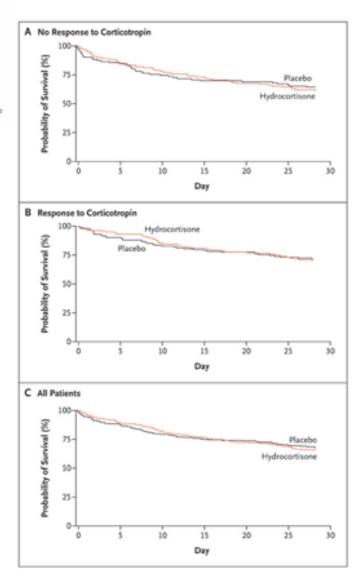

Responders ACTH stim Cortisol > 9 (70) Nonresponders < 9 (229)


1326 Patients Assessed for Eligibility 1026 Ineligible 315 Had Shock Duration >8 h 180 Had Advanced Form of Cancer 157 Had Formal Indication for Steroids 124 Had Advanced Directive to Withhold or Withdraw Life-Sustaining Treatments 104 Refused Consent 76 Participating in Another Clinical Trial 56 Had Advanced Form of AIDS Infection 8 Had Contraindication to Steroids 6 Died Before Randomization 300 Randomized 149 Assigned to Receive 151 Assigned to Receive Placebo Steroids 148 Received 151 Received Assigned Assigned Treatment Treatment 1 Died Before Drug Administration 0 Lost to Follow-up 0 Lost to Follow-up 0 Discontinued 0 Discontinued Treatment Treatment 149 Included in Analysis 150 Included in Analysis 1 Excluded from Analysis (Consent Withdrawal)

Steroids and Mortality in Septic Shock Annane JAMA 2002

<i>Mortality%</i> (28 day)	Placebo	Steroids	p
Responders	53	61	.96
Nonresponders	63	53	.04
All patients	61	55	.09

The NEW ENGLAND JOURNAL of MEDICINE


ESTABLISHED IN 1812

JANUARY 10, 2008

VOL. 358 NO. 2

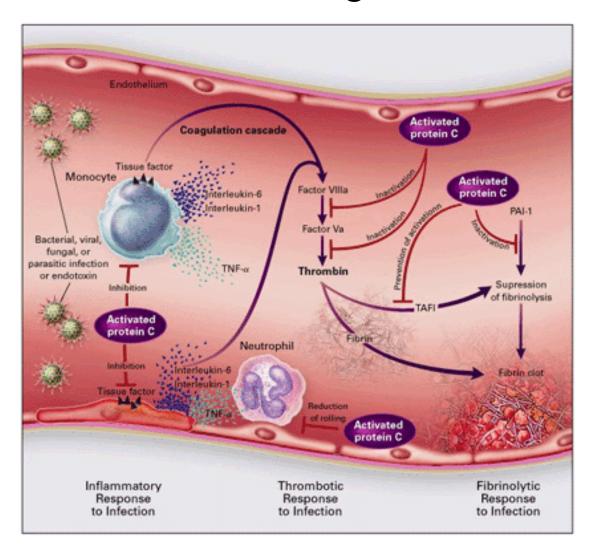
Hydrocortisone Therapy for Patients with Septic Shock

Charles L. Sprung, M.D., Djillali Annane, M.D., Ph.D., Didier Keh, M.D., Rui Moreno, M.D., Ph.D., Mervyn Singer, M.D., F.R.C.P., Klaus Freivogel, Ph.D., Yoram G. Weiss, M.D., Julie Benbenishty, R.N., Armin Kalenka, M.D., Helmuth Forst, M.D., Ph.D., Pierre-Francois Laterre, M.D., Konrad Reinhart, M.D., Brian H. Cuthbertson, M.D., Didier Payen, M.D., Ph.D., and Josef Briegel, M.D., Ph.D., for the CORTICUS Study Group*

Crit Care Med 2008: 36: 296-327

H. Steroids

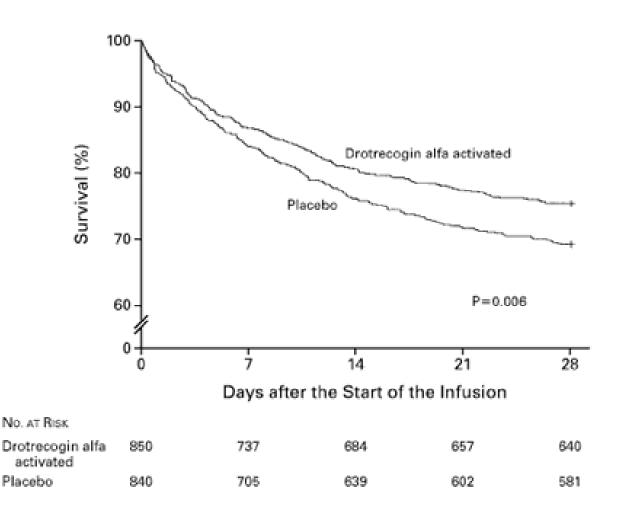
- Patients with septic shock should not receive dexamethasone if hydrocortisone is available (grade 2B).
- Daily addition of oral fludrocortisone (50 μg) if hydrocortisone is not available and the steroid that is substituted has no significant mineralocorticoid activity. Fludrocortisone is considered optional if hydrocortisone is used (grade 2C).
- Wean the patient from steroid therapy when vasopressors are no longer required (grade 2D).
- Doses of corticosteroids comparable to >300 mg of hydrocortisone daily should not be used in severe sepsis or septic shock for the purpose of treating septic shock (grade 1A).

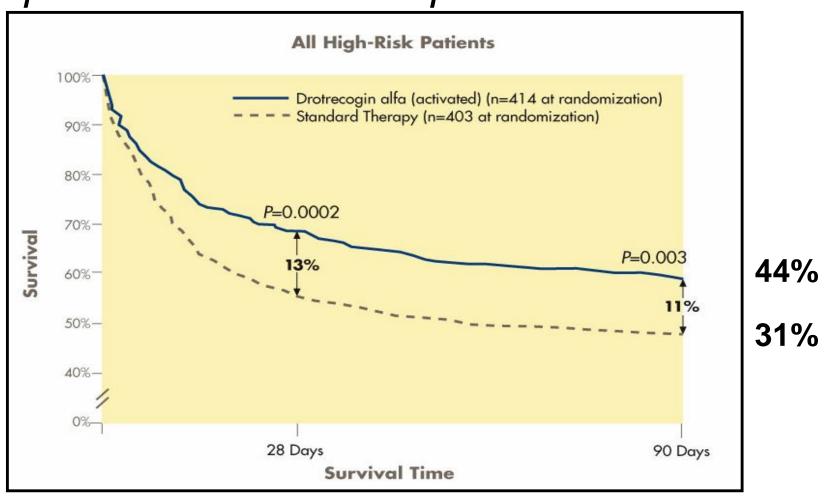

Crit Care Med 2008: 36: 296-327

- I. Recombinant Human Activated Protein C (rhAPC)
 - Sepsis-induced organ dysfunction associated with high risk of death, APACHE II ≥ 25, or MOF (grade 2B except for patients within 30 days of surgery, for whom it is grade 2C).
 - No bleeding risk that outweighs benefit of rhAPC
 - Severe sepsis and low risk of death, APACHE II <20 or one organ failure, should not receive rhAPC (grade 1A).

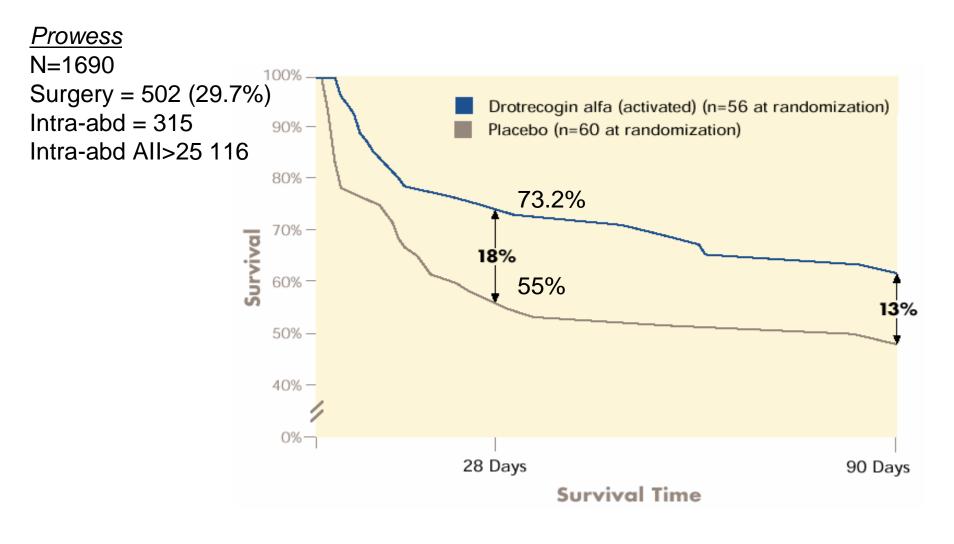
PROWESS, ADDRESS, ENHANCE

Recombinant Human Activated Protein C for Severe Sepsis


Bernard New Eng J Med 2001


Inflammation Thrombosis Fibrinolysis

Recombinant Human Activated Protein C for Severe Sepsis (PROWESS)


Bernard New Eng J Med 2001

rhAPC in Patients at High Risk of Death Apache II > 25 or Vasopressors

rhAPC Intra-Abdominal Surgery Patients

Bleeding Events

- All high risk patients
 - -2.2 vs 0.7%
- All intra-abdominal surgery patients
 - -2.5 vs 0%
- ICH
 - -0.2 vs 0.1%

Intra-cranial Hemorrhage

- PROWESS 0.1 vs 0.2%
- ADDRESS 0.4 vs 0.5%
- ENHANCE 1.5%

Managing rhAPC in Surgery Patients

- T1/2 = 13 minutes
 - 80% eliminated in 30 minutes
- Discontinue 2 hrs prior to invasive procedure
- Resume 12 hrs after surgery

rhAPC

Contraindications

Appendix B. Contraindications to use of recombinant human activated protein C (rhAPC)^a

rhAPC increases the risk of bleeding. rhAPC is contraindicated in patients with the following clinical situations in which bleeding could be associated with a high risk of death or significant morbidity.

- Active internal bleeding
- Recent (within 3 months) hemorrhagic stroke
- Recent (within 2 months) intracranial or intraspinal surgery, or severe head trauma
- Trauma with an increased risk of life-threatening bleeding
- Presence of an epidural catheter
- Intracranial neoplasm or mass lesion or evidence of cerebral herniation

See labeling instructions for relative contraindications.

^aThe committee recommends that platelet count be maintained at \geq 30,000 during infusion of rhAPC.

Physicians' Desk Reference. 57th Edition. Montvale, NJ, Thompson PDR, 2003, pp 1875–1876.

rhAPC

Relative Contraindications

- INR > 3.0
- GI Bleeding within 6 weeks
- Thrombolytics within 3 days
- Oral anticoagulants or GPIIb/IIIA inhibitors within 7 days
- ASA within 7 days
- Ischemic stroke with 3 months
- AVM or aneurysm
- Bleeding diathesis
- Chronic liver disease

Crit Care Med 2008: 36: 296-327

- J. Blood products
 - Once hypoperfusion is resolved limit transfusion to pts with Hg < 7 g/dl
 Grade 1B

EPO is not indicated for anemia except in renal failure pts.
 Grade 1B

Canadian Critical Care Trial Group Herbet New Eng J Med 1999

- 838 critically ill patients with euvolemia after initial treatment
- 418 patients restrictive strategy
 - Hg below 7.0 g per deciliter
 - Hg maintained at 7.0 to 9.0 g per deciliter
- 420 patients liberal strategy
 - Hg below 10.0 g per deciliter
 - Hg maintained at 10.0 to 12.0 g per deciliter.

TABLE 2. OUTCOMES.*

Outcome Measure	RESTRICTIVE- TRANSFUSION STRATEGY (N=418)	LIBERAL- TRANSFUSION STRATEGY (N=420)	ABSOLUTE DIFFERENCE BETWEEN GROUPS	95% Confidence Interval	P Value	Subgroup Analysis Primary or secondary diagnosis cardiac disease
			р	percent		Mortality
Death — no. (%)			7			
30-day	78 (18.7)	98 (23.3)	4.7	-0.84 to 10.2	0.11	20.5 (R) vs 22.9% (S)
60-day†	95 (22.7)	111 (26.5)	3.7	-2.1 to 9.5	0.23	. ,
ICU '	56 (13.4)	68 (16.2)	2.3	-2.0 to 7.6	0.29	
Hospital	93 (22.2)	118 (28.1)	5.8	-0.3 to 11.7	0.05	
Multiple-organ-dysfunction score	,	` ′				
Unadjusted score	8.3 ± 4.6	8.8 ± 4.4	0.5	-0.1 to 1.1	0.10	
Adjusted score‡	10.7 ± 7.5	11.8 ± 7.7	1.1	0.8 to 2.2	0.03	
Change from base-line score§	3.2 ± 7.0	4.2 ± 7.4	1.0	0.1 to 2.0	0.04	
No. of organs failing — no. (%)						
0	100 (23.9)	82 (19.5)				
1	136 (32.5)	149 (35.5)				
2 3	109 (26.1)	108 (26.0)				
3	51 (12.2)	63 (15.0)				
>3	22 (5.3)	18 (4.3)	1.8¶	-3.4 to 7.1¶	0.53¶	
Length of stay — days			-		-	
IČU	11.0 ± 10.7	11.5 ± 11.3	0.5	-1.0 to 2.1	0.53	
Hospital	34.8 ± 19.5	35.5 ± 19.4	0.7	-1.9 to 3.4	0.58	

^{*}Plus-minus values are means \pm SD. ICU denotes intensive care unit. Because of rounding, percentages may not total 100.

[†]Three patients were lost to follow-up at 60 days: two in the restrictive-strategy group and one in the liberal-strategy group.

[‡]All patients who died were given a score of 24 (the highest score).

[§]Adjusted scores were used.

[¶]The comparison is between three or more organ failures and fewer than three organ failures.

TABLE 3. Complications That Occurred during the Patients' Stays in the Intensive Care Unit.

Complication*	RESTRICTIVE- TRANSFUSION STRATEGY (N=418)	LIBERAL- TRANSFUSION STRATEGY (N=420)	ABSOLUTE DIFFERENCE BETWEEN GROUPS	95% Confidence Intervalt	P Value
	no. (%)		pe	ercent	
Cardiac	55 (13.2)	88 (21.0)	7.8	2.7 to 12.9	< 0.01
Myocardial infarction	3 (0.7)	12(2.9)	2.1	_	0.02
Pulmonary edema	22 (5.3)	45 (10.7)	5.5	1.8 to 9.1	< 0.01
Angina	5 (1.2)	9(2.1)	0.9	_	0.28
Cardiac arrest	29 (6.9)	33 (7.9)	0.9	-2.6 to 4.5	0.60
Pulmonary	106 (25.4)	122 (29.0)	3.7	-2.3 to 9.7	0.22
ARDS	32 (7.7)	48 (11.4)	3.8	-0.2 to 7.8	0.06
Pneumonia	87 (20.8)	86 (20.5)	-0.3	-5.8 to 5.1	0.92
Infectious	42 (10.0)	50 (11.9)	1.9	-2.4 to 6.1	0.38
Bacteremia	30 (7.2)	40 (9.5)	2.3	-1.4 to 6.1	0.22
Catheter-related sepsis	21 (5.0)	17 (4.0)	-1.0	-3.8 to 1.8	0.50
Septic shock	41 (9.8)	29 (6.9)	-2.9	-6.7 to 0.8	0.13
Hematologic‡	10 (2.4)	10 (2.4)	0	-2.1 to 2.1	1.00
Gastrointestinal§	13 (3.1)	19 (4.5)	1.4	-1.2 to 4.0	0.28
Neurologic¶	25 (6.0)	33 (7.9)	1.9	-1.6 to 5.3	0.28
Shock	67 (16.0)	55 (13.1)	-2.9	-7.7 to 1.8	0.23
Any complication	205 (49.0)	228 (54.3)	5.2	-1.5 to 12.0	0.12

^{*}Patients may have had more than one type of complication. ARDS denotes acute respiratory distress syndrome.

†In some cases, the number of patients in a group was too small to allow calculation of the 95 percent confidence interval.

‡This category includes transfusion reactions, hemolytic anemia, disseminated intravascular coagulation, and other blood dyscrasias.

\$This category includes gastrointestinal bleeding, bowel perforation, and ischemic bowel syndrome.

¶This category includes cerebrovascular accidents and encephalopathies.

This category includes hypovolemic shock, cardiogenic shock, and all other types of shock except septic shock.

Crit Care Med 2008: 36: 296-327

- FFP not indicated in patients without bleeding
 Grade 2D
- Antithrombin therapy not indicated Grade 1B
- Plts should be administered for Plts <
 5,000 regardless of bleeding
- If risk of bleeding is high plts for counts 5,000-30,000
- Plts>50,000 required for surgery

Grade 2D

Crit Care Med 2008: 36: 296-327

- K. Mechanical Ventilation
 - Lung protective ventilation
 - Vt 6 ml/kg
 Grade 1B
 - Pplat ≤ 30 **Grade 1C**
 - Hypercapnia can be tolerated
 Grade 1C
 - PEEP to avoid lung collapse
 Grade 1C
 - Consider prone position
 Grade 2C
 - Elevated HOB 45°
 Grade 1B
 - NIV Grade 2B
 - Weaning Protocol
 Grade 1A

NIH NHLBI ARDS Clinical Trials Network

NIH NHLBI ARDS Network

Prospective, Randomized, Multi-Center Trial of 12 ml/kg Vs 6 ml/kg Tidal Volume Positive Pressure Ventilation for Treatment of Acute Lung Injury and Acute Respiratory Distress Syndrome

- Mode: Volume Assist / Control
- Rate: Set rate < 35; adjust for pH goal = 7.30-7.45</p>
- Oxygenation $PaO_2 = 55-80 \text{ mmHg}$ $SaO_2 = 88-95\%$
- PEEP 5 5 8 8 10 10 10 20 FiO₂ .3 .4 .4 .5 .5 .6 .7 1.0
- I:E = 1:1.8-1.3
- Weaning by Pressure Support when PEEP/FiO2 ≤ 8/.40

New Engl J Med 2000; 342: 1301-1308

Ventilator Procedures

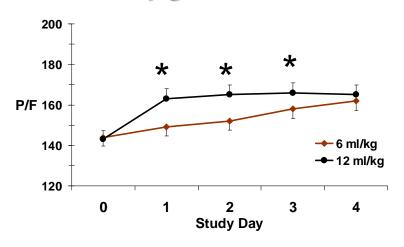
12 ml/kg Group

- Initial Vt = 12 ml/kg IBW
- If Pplat > 50 cmH20, reduce Vt by 1 ml/kg.
- Minimum Vt = 4 ml/kg
- If Pplat < 45 cmH20 and
 Vt < 11 ml/kg, increase Vt
 by 1 ml/kg.

6 ml/kg Group

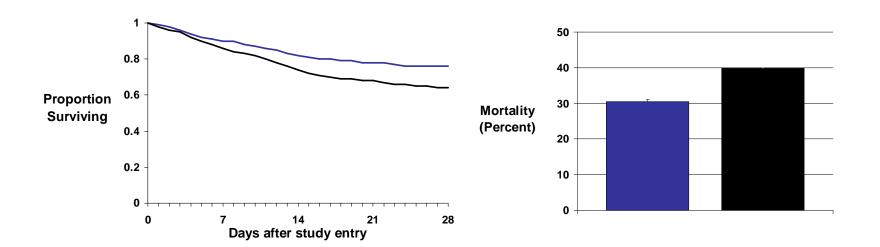
- Initial Vt = 6 ml/kg IBW.
- If Pplat > 30 cmH20, reduce Vt by 1 ml/kg.
- Minimum Vt = 4 ml/kg.
- If Pplat < 25 cmH20 and
 Vt < 5 ml/kg, increase Vt
 by 1 ml/kg.

NIH NHLBI ARDS Network

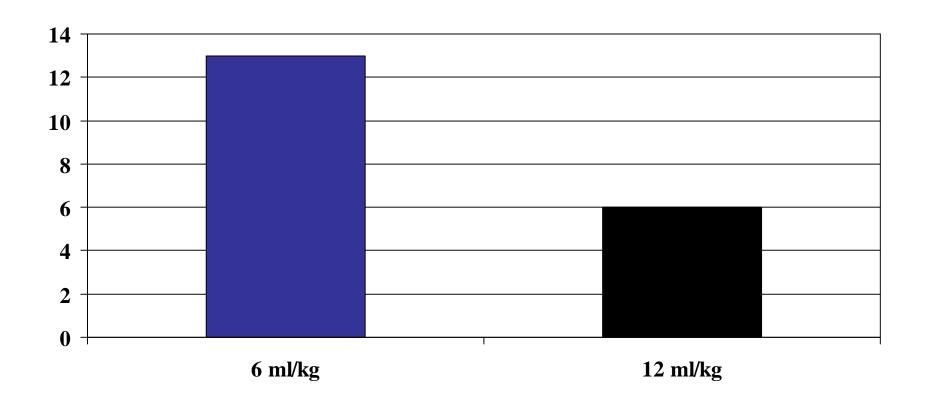

Prospective, Randomized, Multi-Center Trial of 12 ml/kg Vs 6 ml/kg Tidal Volume Positive Pressure Ventilation for Treatment of Acute Lung Injury and Acute Respiratory Distress Syndrome

Plateau Pressure

412 ml/kg 412 ml/kg 425 + 6

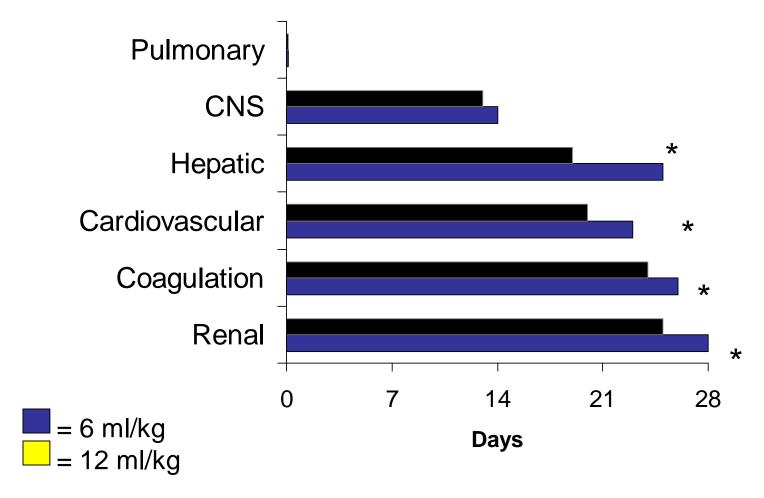

Study Day

Oxygenation



New Engl J Med 2000; 342: 1301-1308

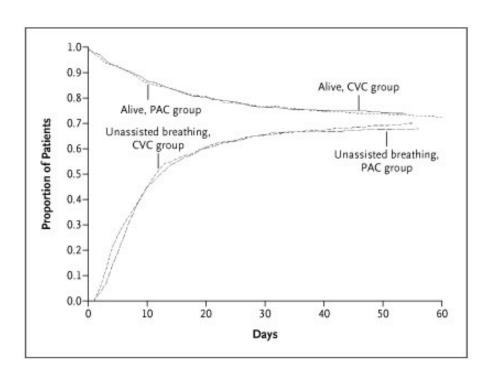
28 Day Survival

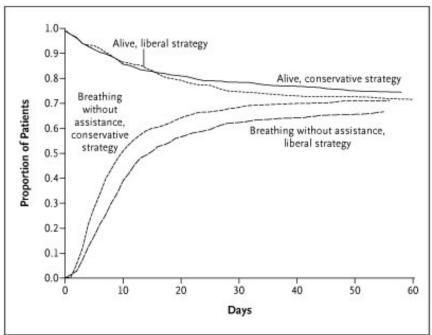


Median # Ventilator-Free Days

New Engl J Med 2000; 342: 1301-1308

Median Organ Failure Free Days


New Engl J Med 2000; 342: 1301-1308


SCCM Surviving Sepsis Campaign Crit Care Med 2008: 36: 296-327

- K. Mechanical Ventilation
 - We recommend against the routine use of the pulmonary artery catheter for patients with ALI/ARDS (grade 1A).
 - To decrease days of mechanical ventilation and ICU length of stay we recommend a conservative fluid strategy for patients with established acute lung injury who do not have evidence of tissue hypoperfusion (grade 1C).

ARDS Network: FACTT

Fluids and Catheter Treatment Trial PAC vs. CVP

Crit Care Med 2008: 36: 296-327

- L. Sedation, Analgesia, Neuromuscular Blockade
 - Protocols Grade 1B
 - Daily interruptions Grade 1B
 - Avoid neuromuscular blockade
 Grade 1B

Daily Interruption of Sedative Infusions Kress New Eng J Med 2000

- 128 adult patients who were receiving mechanical ventilation and continuous infusions of sedative drugs in a MICU
- Intervention group: sedatives interrupted until the patients were awake, on a daily basis
- Control group, the infusions were interrupted only at the discretion of the clinicians in the intensive care unit.

Length of Ventilation

Crit Care Med 2008: 36: 296-327

- M. Glucose Control
 - Following stabalization, use protocol to maintain glucose < 150 mg/dl
 Grade 2C
 - All patients on iv insulin should be receiving glucose
 Grade 1C

Intensive Insulin Therapy in Critically III Patients

Greet Van den Berghe New Engl J Med 2001

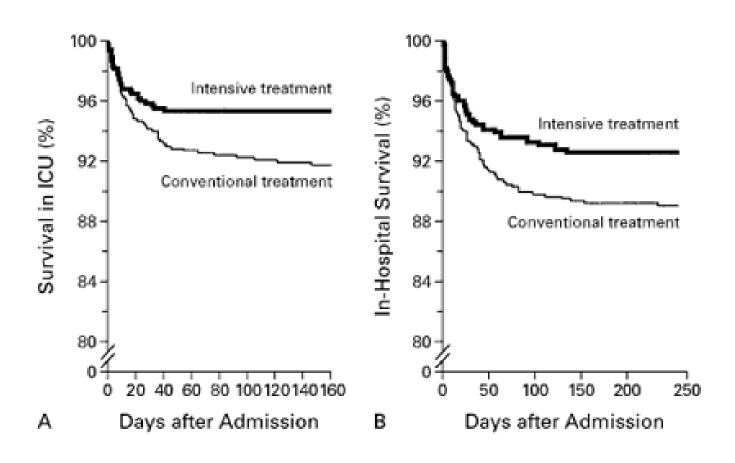
<u>Characteristic</u>	Conventional	Intensive
	N=783	N=765
Male	71%	71%
Age	62.2%	63.4%
BMI	25.8%	26.2%
Cardiac Surgery	493 (63)	477 (62)
Neurologic Disease	290 (37)	288 (38)
Cerebral Trauma		
Thoracic Surgery	56 (7)	66 (9)
Abd Surgery	58 (7)	45 (6)
Vasc Surgery	32 (4)	30 (4)
Muti-trauma	35 (4)	33 (4)
Transplant	44 (6)	46 (6)
Other	35 (4)	35 (5)
Diabetes	103 (13)	101 (13)
Insulin	33 (4)	39 (5)
Oral	70 (9)	62 (8)

Intensive Insulin Therapy in Critically III Patients

Greet Van den Berghe New Engl J Med 2001

Table 2. Insulin Therapy and Control of Blood Glucose Levels.*

Variable	Conventional Treatment (N=783)	Intensive Treatment (N = 765)	P Valuet
Administration of insulin — no. (%)	307 (39.2)	755 (98.7)	< 0.001
Insulin dose — IU/day‡ Median Interquartile range	33 17-56	71 48-100	< 0.001
Duration of insulin use — % of ICU stay Median Interquartile range	67 40-100	100	< 0.001
Morning blood glucose — mg/dl§ All patients Patients receiving insulin	153±33 173±33	103±19 103±18	<0.001 <0.001


^{*}Plus-minus values are means ±SD. ICU denotes intensive care unit.

[†]P values were determined with the use of Student's t-test, the Mann-Whitney U test, or the chi-square test, as appropriate.

[‡]Values were calculated only for days on which insulin was given.

^{\$}To convert the values for glucose to millimoles per liter, multiply by 0.05551.

Mortality

Greet Van den Berghe New Engl J Med 2001

Morbidity

<u>Variable</u>	Conventional 783	Intensive 765	р
ICU LOS			
Median (d)	3	3	0.2
Patient > 14 d	123 15	87 11.4	0.01
Vent (d)			
Median	2	2	0.06
>14 d Vent	93 11.9	57 7.5	0.003
Renal Insufficiency			
Cr > 2.5	96 12.3	69 9.0	0.04
BUN > 54	88 11.2	59 7.7	0.02
RRT	64 8.2	37 4.8	0.007
Bili > 2	209 26.7	171 22.4	0.04
Septicemia	61 7.8	32 4.2	0.003

Crit Care Med 2008: 36: 296-327

- N. Renal Replacement
 - In the absence of hemodynamic instablity,
 CVVH and Intermittent Hemodialysis are equivalent.
 Grade 2B
 - CVVH is easier in hemodynamic unstable patients.
 Grade 2D

John A. Kellum
Derek C. Angus
John P. Johnson
Martine Leblanc
Martin Griffin
Nagarajan Ramakrishnan
Walter T. Linde-Zwirble

Continuous versus intermittent renal replacement therapy: a meta-analysis

Intermittent versus continuous renal replacement therapy for acute renal failure in adults (Review)

Rabindranath KS, Adams J, MacLeod AM, Muirhead N

Crit Care Med 2008: 36: 296-327

- O. Bicarbonate Therapy
 - Not recommended for the purpose of improving hemodynamics or decreasing need for vasopressors in hypoperfusion induced lactic acidosis with pH ≥7.15

Grade 1B

Crit Care Med 2008: 36: 296-327

- P. DVT Prophylaxis
 - UFH or LMWHGrade 1A
 - Mechanical devices for pts with contraindications
 - Very high risk pts should receive both
 - In high risk pateints LMWH is preferred to UFH

Grade 2C

Crit Care Med 2008: 36: 296-327

- Q. Stress Ulcer Prophylaxis
 - H₂RA **Grade 1A**
 - PPI Grade 1B

Crit Care Med 2008: 36: 296-327

- R. Selective Digestive Tract Decontamination
 - The guidelines group was evenly split on the issue of SDD, with equal numbers weakly in favor and against recommending the use of SDD. The committee therefore chose not to make a recommendation for the use of SDD specifically in severe sepsis at this time.

SCCM Surviving Sepsis Campaign Crit Care Med 2008: 36: 296-327

- S. Consideration for limitation of support
 - Discussions with patients and family: likely outcome and realistic goals.

Grade 1D

Institute Healthcare Improvement Bundles

- Ventilator
 - $HOB > 30^{\circ}$
 - DVT prophylaxis
 - PUD Prophylaxis
 - Daily interruption of sedative infusions
 - Intensive insulin therapy
 - Daily screening for weaning trials

Institute Healthcare Improvement Severe Sepsis Bundle (without shock)

- 4-hour bundle
 - Presumptive diagnosis in 2 hours
 - Measure lactate
 - Antibiotics within 1 hour of diagnosis

- 24-hour bundle
 - Glucose control (<150)
 - Pplat < 30 for vent pts</p>
 - Drotrrecogin alfa considered

Institute Healthcare Improvement Septic Shock Bundle

- 4-hour bundle
 - Immediate fluid resuscitation
 - Antibiotics within 1 hour of diagnosis
 - CVP for pts unresponsive to fluid or lactate > 2
 - Vasopressors for MAP < 65 despite fluid
 - Inotropes and/or PRBCs for SvcO₂ <70% after fluid

- 24-hour bundle
 - Glucose control (<150)
 - Pplat < 30 for vent pts</p>
 - Drotrrecogin alfa considered
 - Steroids for septic shock requiring vasopressors