Fundamentals of Critical Care:

Hemodynamic Monitoring & Optimal Antibiotic Use

Joshua Goldberg, MD
Assistant Professor of Surgery
Associate Medical Director, Burn Unit
UCHSC

Definitions and Principles

- The measurement and interpretation of biological systems that describe performance of the cardiovascular system
- Monitoring is NOT therapy
- Clinicians must know how to interpret the data
- Very few randomized controlled trials

Oxygen Delivery is the Goal

Oxygen Delivery

 DO_2 (mL O_2 /min) = CO (L/min) x CaO_2 (mL O_2 /dL) x 10

 $CO(L/min) = HR (beats/min) \times SV(L/beat)$

 CaO_2 (mL O_2 /dL) = [1.34 x (Hb)(g/dL) x SaO_2] + [.003 x PaO_2 mm Hg]

Oxygen Consumption

 $CVO_2 (mL O_2/dL) = [1.34 x (Hb)(g/dL) x SVO_2] + [.003 x PVO_2 mm Hg]$

 $VO_2 \text{ (mL } O_2/\text{min)} = CO x 3(CaO_2 - CVO_2) x 10$

Determinants of Cardiac Performance

- Preload
 - Estimated by end-diastolic volume (pressure)
 - CVP for RVEDV, PAOP (wedge) for LVEDV
- Afterload
 - \blacksquare SVR = [MAP-CVP]/CO x 80
- Contractility

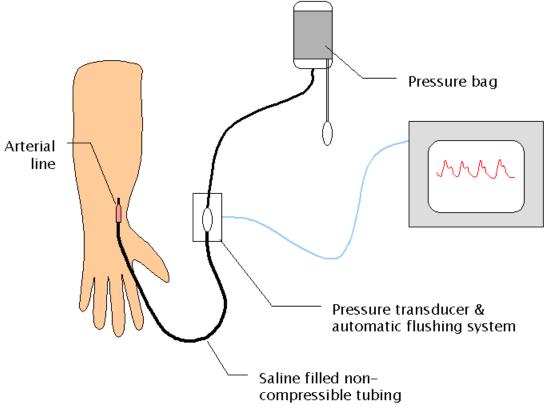
Methods of Hemodynamic Monitoring

- Arterial Blood Pressure
 - Non-invasive
 - Direct arterial pressure measurement
- Central Venous Pressure
- The Pulmonary Artery Catheter
- Cardiac Output Measurement
- Tissue Oxygenation

Non-invasive Blood Pressure Monitoring

Non-invasive Blood Pressure Measurement

- Manual or automated devices
- Method of measurement
 - Oscillometric (most common)
 - MAP most accurate, DP least accurate
 - Auscultatory (Korotkoff sounds)
 - MAP is calculated
 - Combination


Limitations of Non-invasive Blood Pressure Monitoring

- Cuff must be placed correctly and must be appropriately sized
- Auscultatory method is very inaccurate
 - Korotkoff sounds difficult to hear
 - Significant underestimation in low-flow (i.e. shock) states
- Oscillometric measurements also commonly inaccurate (> 5 mm Hg off directly recorded pressures)

Direct Arterial Blood Pressure Measurement

Indications for Arterial Catheterization

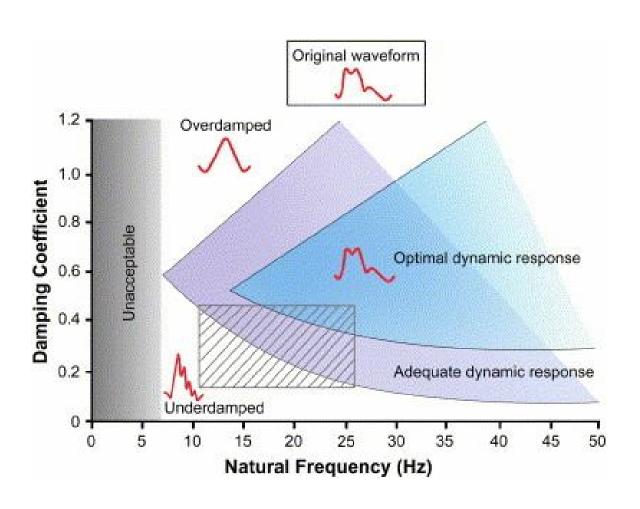
- Need for continuous blood pressure measurement
 - Hemodynamic instability
 - Vasopressor requirement
- Respiratory failure
 - Frequent arterial blood gas assessments
- Most common locations: radial, femoral, axillary, and dorsalis pedis

Complications of Arterial Catheterization

- Hemorrhage
- Hematoma
- Thrombosis
- Proximal or distal embolization
- Pseudoaneurysm
- Infection

Pseudoaneurysm

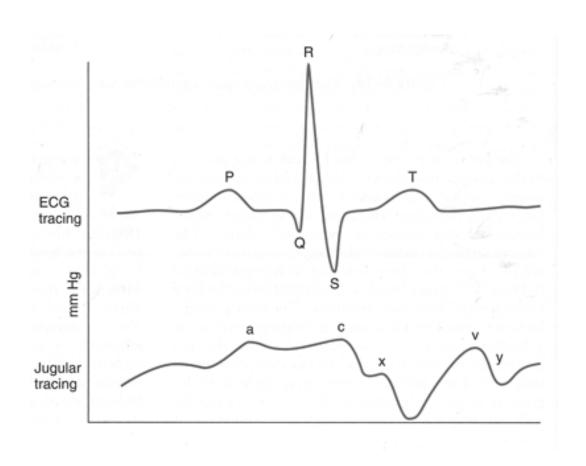
Fig. 1 – Photography of colour Doppler result showing right axillary artery pseudoaneurysm



Limitations of Arterial Catheterization

- Pressure does not accurately reflect flow when vascular impedance is abnormal
- Systolic pressure amplification
 - Mean pressure is more accurate
- Recording artifacts
 - Underdamping
 - Overdamping

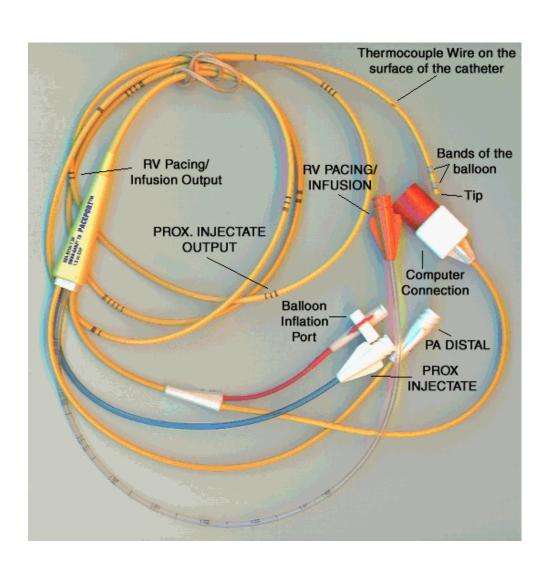
Waveform Distortion



Central Venous Catheterization

- Central venous pressure
 - Right atrial (superior vena cava) pressure
 - Limited by respiratory variation and PEEP
- Central venous oxygen saturation
 - SCVO₂
 - Correlates with SMVO₂ assuming stable cardiac function
 - Goal-directed resuscitation in severe sepsis and septic shock (Rivers, et al)

Central Venous Pressure Waveform



The Pulmonary Artery Catheter

- HJC Swan and sailboats
- Widespread use in critically ill patients
- Remains controversial
 - Lack of prospective, randomized trials
 - PAC data are only as good as the clinicians' interpretation and application
- Measures CVP, PAP, PAOP, Cardiac Index and Svo₂

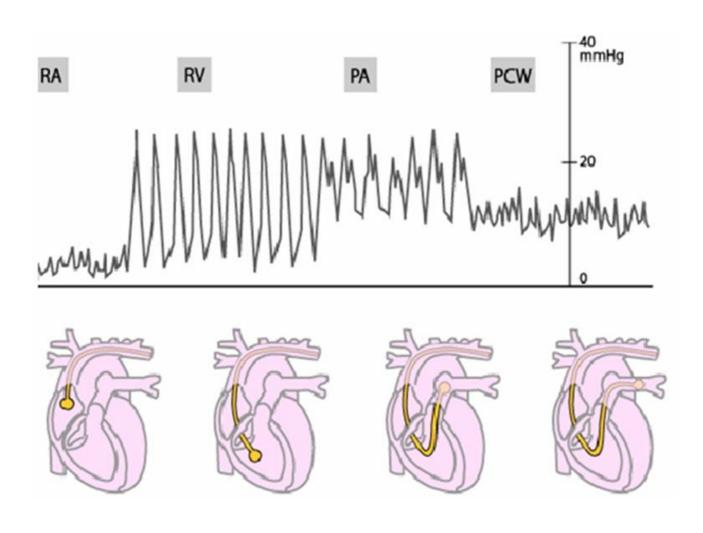
Pulmonary Artery Catheter

Indications for Pulmonary Artery Catheterization

- Identification of the type of shock
 - Cardiogenic (acute MI)
 - Hypovolemic (hemorrhagic)
 - Obstructive (PE, cardiac tamponade)
 - Distributive (septic)
 - Many critically ill patients exhibit elements of more than 1 shock classification
- Monitoring the effectiveness of therapy

Normal Hemodynamic Values

SVO2	60-75%	
Stroke volume	50-100 mL	
Stroke index	25-45 mL/M ²	
Cardiac output	4-8 L/min	
Cardiac index	2.5-4.0 L/min/M ²	
MAP	60-100 mm Hg	
CVP	2-6 mm Hg	
PAP systolic	20-30 mm Hg	
PAP diastolic	5-15 mm Hg	
PAOP (wedge)	8-12 mm Hg	
SVR	900-1300 dynes·sec·cm ⁻⁵	



Hemodynamic Profiles in Shock

Class of Shock	CVP	PAOP	CO/CI	SVR
Cardiogenic				
Hypovolemic				
Hyperdynamic septic				
Hypodynamic septic				

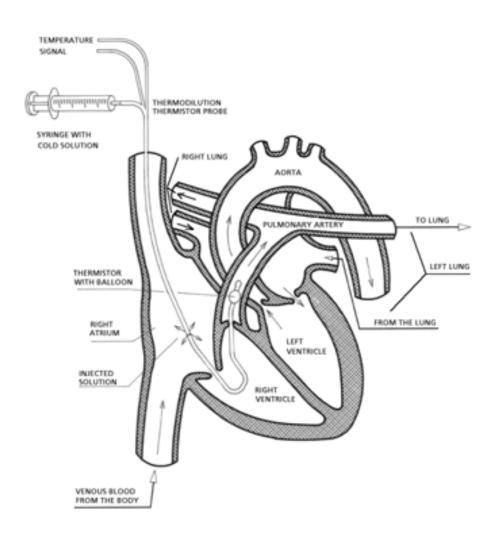
Pulmonary Artery Catheter Placement

Complications of Pulmonary Artery Catheterization

- General central line complications
 - Pneumothorax
 - Arterial injury
 - Infection
 - Embolization
- Inability to place PAC into PA
- Arrhythmias (heart block)
- Pulmonary artery rupture

The Pulmonary Artery Catheter Controversy

- Accuracy of data affected by many conditions common in critically ill patients
- Lack of prospective randomized data supporting better outcomes with PAC
- Limited by the ability of the clinician to accurately interpret PAC data



Cardiac Output Measurement

- Multiple techniques
 - Thermodilution most common
 - Transpulmonary
 - Pulse contour analysis
 - Esophageal Doppler
- Newer pulmonary artery catheters offer continuous cardiac output measurement

Thermodilution Method of Cardiac Output Measurement

Tissue Oxygenation

- Despite advances, our ability to monitor the microcirculation and tissue perfusion is limited
- Laboratory tests for metabolic acidosis are global and insensitive
- Newer technology on the horizon
 - Gastric tonometry
 - Sublingual capnometry

Conclusions

- Multiple different methods of hemodynamic monitoring
- Keys to success
 - 1) Know when to use which method
 - 2) Technical skills for device placement
 - 3) Know how to interpret the data
- Remember the limitations of the technology

Segue.....

Q: Why is hemodynamic monitoring really important?

A: To ensure that the antibiotics get to the tissues......

Optimal Antibiotic Use

- Antimicrobial prophylaxis for surgery
- Empiric antimicrobial therapy
- Challenges of therapeutic antibiotics
 - Correct antibiotic(s)
 - Correct dosing
 - Length of therapy
- Ventilator-associated pneumonia
- Antimicrobial resistance
 - Strategies against resistance
- Bad bugs

Antimicrobial Prophylaxis for Surgery: NSIPP

- Bratzler DW, Houck PM, et al. American Journal of Surgery. 2005 Apr; 189(4): 395-404
- First dose of antibiotics within 60 minutes of surgical incision
- Prophylactic antibiotics should be discontinued within 24 hours of surgery
- Specific antibiotic should be chosen based on activity against bacteria likely to be encountered and having smallest possible impact on normal flora

Principles of Empiric Antimicrobial Therapy

- Vigilance and high index of suspicion
 - Local and systemic signs
 - Laboratory and radiographic findings
- Prompt initiation of therapy
- Appropriate choice of empiric coverage
 - Suspected site of infection
 - Most likely microbial etiologies
 - Likelihood of antimicrobial resistance institution specific
 - Patient-specific toxicity and allergic concerns
- Modification of empiric coverage after 48-72 hours

The Risks of Inadequate Empiric Antimicrobial Treatment

- Prospective cohort study of 2000 ICU patients
 - Hospital mortality rate greater (52% vs. 12%) in patients who received inadequate antimicrobial treatment
 - Most important independent determinant of hospital mortality by logistic regression

- 655 patients infected
 - 169 (25.8%) received inadequate antimicrobial treatment
 - Risk factors: prior antibiotic use, presence of bloodstream infection, higher APACHE II scores, decreasing age
 - Infection-related mortality rate 42% vs. 17.7%

The Risks of Inadequate Empiric Antimicrobial Treatment: Bloodstream Infections

- Prospective cohort study of 492 patients with documented bloodstream infections
- 147 (29.9%) received inadequate antimicrobial therapy
- □ Hospital mortality rate 61.9% vs 28.4%
- Risk factors for inadequate antimicrobials:
 - Candida bloodstream infection
 - Prior antibiotic use during same hospitalization
 - Decreasing serum albumin
 - Increasing central catheter duration

Modification of Empiric Coverage

- Based on clinical condition and culture results
- 48-72 hours after empiric antimicrobials initiated
- Interpret all results with caution
 - Negative cultures drawn after antibiotics initiated
 - Cultures with high incidence of false positives (tracheal aspirates)
 - Contaminants

Therapeutic Antimicrobials: Choosing the Right Drug(s)

- Gram-positive infections
 - β-lactam antibiotics (penicillins, cephalosporins, carbapenems)
 - Fluoroquinolones
 - Vancomycin
 - Linezolid, Daptomycin
- Gram-negative infections
 - β-lactam antibiotics
 - Fluoroquinolones
 - Aminoglycosides

Therapeutic Antimicrobials: Choosing the Right Drug(s)

- Anaerobic infections
 - Penicillins
 - Carbapenems
 - Second-generation cephalosporins
 - Metronidazole
- Fungal infections
 - Amphotericin
 - Triazoles
 - Echinocandins

Therapeutic Antimicrobials: Bactericidal vs. Bacteriostatic

- Bactericidal
 - Penicillins*
 - Cephalosporins
 - Carbapenems
 - Monobactams
 - Vancomycin*
 - Quinolones
 - Aminoglycosides
 - Quinupristin-dalfopristin
 - Metronidazole

- Bacteriostatic
 - Trimethoprimsulfamethoxasole
 - Clindamycin
 - Linezolid
 - Macrolides
 - Chloramphenicol
 - Tetracyclines

Therapeutic Antimicrobials: Correct Dosing

- Important variables in critically ill patients:
 - Target organism
 - Site of infection
 - MIC
 - Host defenses
 - Volume of distribution
 - Hepatic and/or renal impairment
- Concentration-dependent vs. Timedependent killing

Therapeutic Antimicrobials: Duration of Therapy

- Very controversial
- Factors to consider:
 - Severity of infection
 - Presence of prosthetic material, abscess, necrotic tissue
 - Rapidity of clinical and microbiological response
 - Status of host defenses
- Balancing adequacy of therapy with prevention of resistance

Ventilator Associated Pneumonia

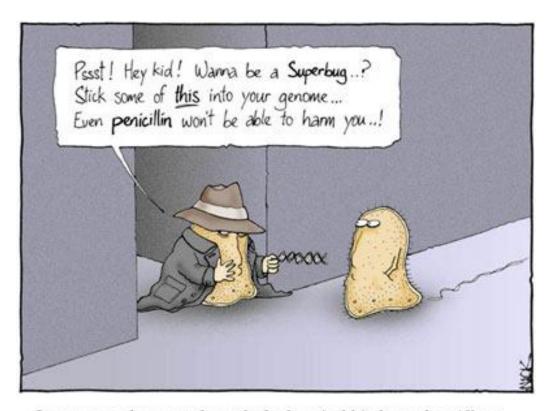
- Most frequent nosocomial infection in ICU
 - 80% of hospital-acquired pneumonia
 - 21-fold increased risk with artificial airway
 - Cumulative risk is 1% per day of mechanical ventilation
 - > \$40,000 cost per patient (1999)
- Risk factors
 - Burns
 - Trauma
 - Male gender
 - Central nervous system disease
 - Aspiration

Diagnosis of Ventilator Associated Pneumonia

- Johanson criteria
 - Chest X-ray
 - Sensitive but not specific
 - Leukocytosis/leukopenia
 - Purulent secretions
- Clinical Pulmonary Infection Score
 - Adds fever, oxygenation, and culture results
 - Sensitivity and specificity are highly variable
- Bacteriologic data
 - Different methods of quantitative cultures seem equivalent

Strategies to Prevent Ventilator Associated Pneumonia

- Patient-oriented
 - Gown and glove use
 - Avoiding gastric distention
 - Head-of-bed elevation
 - Minimizing stress-ulcer prophylaxis
- Microorganism-oriented
 - HAND WASHING
 - Clorhexidine oral rinse
 - Selective gut decontamination
- Device-oriented
 - Subglottic drainage
 - Humidification



Management of Ventilator Associated Pneumonia

- Prompt initiation of adequate empiric therapy is the most important concept
- Considerations:
 - Prior antibiotic exposure
 - Comorbidities
 - Length of hospitalization
 - Local microbial epidemiology and susceptibilities
- Key questions:
 - Is the patient as risk of MRSA?
 - Is A. baumannii a problem at the institution?
 - Is the patient at risk of P. aeruginosa?

Antimicrobial Resistance

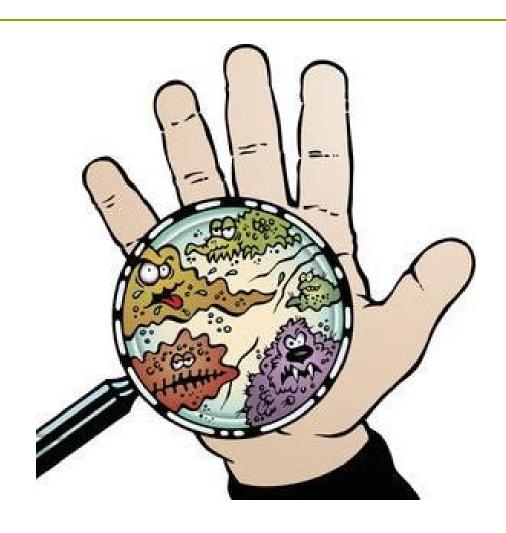
It was on a short-cut through the hospital kitchens that Albert was first approached by a member of the Antibiotic Resistance.

Antimicrobial Resistance: CDC Programs

- National Nosocomial Infections Surveillance (NNIS) System
- Project ICARE (Intensive Care Antimicrobial Resistance Epidemiology)
- Higher rates of resistance in the ICU correlate with more antibiotic use:
 - Enterobacter 3rd-generation cephalosporins
 - Enterococci vancomycin
 - P. aeruginosa antipseudomonal penicillins and 3rdgeneration cephalosporins
- Higher rates of resistance in the ICU that do not correlate with more antibiotic use:
 - MRSA and MR-CNS

Strategies to Minimize Antimicrobial Resistance: Individual Patient

- Use antimicrobials with highest potency
- Appropriate dose and dosing intervals
- Avoid known inducers of chromosomal resistance
- Chose agents with good penetration to site of infection
- Avoid antagonistic antimicrobial combinations
- Appropriate treatment duration
- Achieve therapeutic drainage and/or device removal



Strategies to Minimize Antimicrobial Resistance: ICU-based

- HAND-WASHING
- Appropriate glove and gown use
- Surveillance monitoring for resistant strains
 - MRSA
 - VRE
 - ESBL
- Appropriate patient isolation policies
- Antimicrobial cycling
- Computer-assisted antimicrobial prescription

Antimicrobial Resistance

Reasons for Antimicrobial Failure

- Undrained infected material
- Underlying host defenses
- Infected prosthetic material
- Poor tissue penetration
- Superinfection with (new) pathogen
- Evolved resistance
- Inadequate dosing
- Antagonistic antimicrobial combination

Bad Bugs

- Vancomycin-resistant Enterococci
- Methicillin-resistant S. aureus
- Pseudomonas aeruginosa
- ESBL strains
 - Enterobacter
 - Klebsiella
 - Serratia
- Acinetobacter baumannii

Vancomycin-resistant Enterococci

- Predominantly E. faecium
- Usually resistant to ampicillin
- Can be contaminant but bloodstream infections and purulent closed-space collections in symptomatic patients must be treated
- Linezolid
- Quinupristin/dalfopristin
- Daptomycin

Methicillin-resistant *S. aureus*

- Vancomycin remains useful, but be aware of limitations
 - Slow bactericidal activity
 - Poor lung and CNS penetration
 - Poor activity in biofilms
- Emergence of vancomycin-resistance
- Linezolid
- Quinupristin/dalfopristin
- Daptomycin

Pseudomonas aeruginosa

- Virulent: infection-associated mortality as high as 70% despite therapy
- Intrinsic and acquired resistance:
 - Chromosomal-mediated β-lactamase
 - Aminoglycoside modifying enzymes
 - Mutations of outer membrance porin channels
- Piperacillin-tazobactam
- Meropenem
- Aminoglycosides
- Colistin

ESBL strains

- Plasmid-mediated production of βlactamases
- Resistance to aztreonam, piperacillin, and later generation cephalosporins
- ESBL strains commonly coexpress aminoglycoside and/or quinolone resistance
- Carbapenems are the most proven antimicrobial

