tor (probably in the 7th century). The four original families have a common link around the year 1720. Some clinical features are similar (age at onset, initial symptom, and unilateral foot dystonia). The course was more benign than in other patients with PD.

Together, the present observations and those listed in relation to LRRK2 mutations imply that the presence of LBs and neurites, NFTs, ubiquitin-immunoreactive inclusions, and rare LRRK2-positive neurites are not essential findings in PD linked with LRRK2 mutations.

Author Roles: J.-F.M.-M.: diagnosis and management of the patient, conception, organization, and execution of the research, writing of the first draft, review, and critique of the manuscript; J.R.-M.: conception and execution of the research project, writing of the first draft, review, and critique of the manuscript; M.J.B.: execution of the research project, review of the first draft, review, and critique of the manuscript; I.R.: pathology study; A.G.: molecular study, review and critique of the manuscript; F.M.: execution of the research project, review and critique of the manuscript; I.P.: execution of the research project, writing of the first draft, review, and critique of the manuscript, pathology study; A.L. de M.: conception and execution of the research project, writing of the first draft, review, and critique of the manuscript, coordination. J.-F.M.-M. and J.R.-M. contributed equally to this work.

REFERENCES

Tremor in 48,XXYY Syndrome

Nicole Tartaglia, MD,1,2 Mariya Borodyanska, BA,2 and Deborah A. Hall, MD, PhD3

1Department of Pediatrics, School of Medicine, University of Colorado Denver, Colorado, USA; 2Department of Pediatrics, M.J.N.D. Institute, University of California, Davis Medical Center, Sacramento, California, USA; 3Department of Neurology, School of Medicine, University of Colorado Denver, Colorado, USA

Video

Abstract: The 48,XXYY syndrome is a form of sex chromosome aneuploidy presenting in 1:18,000 males. Tremor has been previously reported in 47,XXY and 47,XXYY syndromes, but has not been well described in 48,XXYY syndrome. Ten males with 48,XXYY syndrome had a standardized neurological examination and videotaping, which included the Clinical Rating Scale for Tremor and the International Cooperative Ataxia Rating Scale. All 10 cases had postural and kinetic tremor on physical examination. Other findings included mild gait ataxia, dysarthria, and nystagmus. Three cases are reviewed. Tremor is a common finding in children and young adults with 48,XXYY syndrome. Dosage alteration of genes on the sex chromosomes may be involved in the pathogenesis of this tremor. Karyotyping should be considered in individuals presenting with tremor and a history of developmental delay, learning disabilities, tall stature, or microorchidism. © 2009 Movement Disorder Society

Key words: XXYY syndrome; sex chromosome abnormality; XXYY; Klinefelter syndrome; tremor

Additional Supporting Information may be found in the online version of this article.

*Correspondence to: Assi. Prof. Nicole Tartaglia, Department of Pediatrics, University of Colorado Denver, School of Medicine, Child Development Unit, The Children's Hospital, 13123 East 16th Ave, B-140, Aurora, Colorado 80045. E-mail: tartaglia nicole@tcden.org

Potential conflict of interest: The authors report no conflict of interest.

Received 9 September 2009. Revised 17 March 2009; Accepted 12 June 2009

Published online 24 August 2009 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/mds.23790
48,XXYY syndrome is a rare form of sex chromosome aneuploidy occurring in approximately 1:18,000 males. 48,XXYY syndrome was previously considered a variant of Klinefelter syndrome (47,XXY) due to a similar physical phenotype including tall stature, hypergonadotropic hypogonadism, and microorchidism. However, a distinct phenotype is now recognized to include additional medical problems and more significant cognitive and psychological impairments.1,2 Tremor has been previously described in case reports in 48,XXYY syndrome3–5 and "essential tremor" has also been reported in children and adults with other common forms of sex chromosome aneuploidy, including 47,XXX and 47,XY syndromes.6–9 It has been hypothesized that dosage alteration of genes on the sex chromosomes may predispose to the development of tremor.10 In this article, we present the results of standardized neurological examinations in 10 males with 48,XXYY syndrome with tremor to document and further characterize this finding in 48,XXYY syndrome. We also describe three cases and include the first video series of tremor in 48,XXYY syndrome.

SUBJECTS AND METHODS

The 10 subjects in this case series were ascertained during an annual XXY meeting in New York, in 2007, at which 28 males aged 3–26 years with 48,XXYY and their families were in attendance. All males with 48,XXYY at the meeting with minimal to severe tremor were invited to participate (n = 14); 4 subjects declined due to interest in other activities. The other 14 males with XXYY at the meeting (9 males age 2–13; 5 males age 14+) did not report tremor symptoms and were not evaluated due to time constraints. The 10 subjects signed Institutional Review Board (IRB)-approved consent forms and additional consent for videotaping. Seven of the 10 subjects had been previously evaluated and included in a larger study on medical and psychological features in XXYY syndrome,1 the other three were not included in our previous research. Each subject had a standardized medical history, neurological examination, and was videotaped by a neurologist specializing in movement disorders (D.H.) and a developmental pediatrician with expertise in sex chromosome aneuploidy (N.T.).

The motor portion of the Clinical Rating Scale for Tremor (CRST)11 and the International Cooperative Ataxia Rating Scale (ICARS)12 were performed on each subject, with the entirety of the scales videotaped. The CRST motor portion includes objective assessment of rest, postural, and kinetic tremors, as well as objective functional rating of motor tasks. The ICARS evaluates categories including postural/gait/stance, limb movement, speech, and oculomotor. Higher scores on both of these scales imply worse tremor or ataxia. Statistical analysis to determine Pearson correlation for age and total tremor score (sum of CRST and ICARS scores) was calculated using SPSS. Family history of tremor was ascertained from the parents. Tremor frequency was measured (in Case 1 only) using the CATSYS 2000 system during a visit to UC-Davis per the protocol described in Allen et al.13

RESULTS

Clinical features of the patients are reported in Table 1. The mean age of the subjects was 18.3 ± 4.6. The mean motor CRST score was 10.2 ± 1.6 and the mean total ICARS was 12 ± 1.8. There was no significant correlation between the age of subjects and the severity of symptoms as measured by the total of the CRST and ICARS scores (Pearson r = −0.0002, P = 0.99).

Half of the subjects had a family history of tremor. There was no significant difference in CRST or total ICARS scores between groups when compared based on positive or negative family history.

Case Descriptions

Case 1

A 22-year-old left-handed male reported tremor with handwriting since age 7. He noticed the tremor when playing video games or eating. The tremor had progressively worsened over the last few years and was exacerbated by stress and sleep deprivation. A trial of atenolol 10 mg was stopped due to an episode of syncope, and a trial of primidone was discontinued due to sleepiness. Neither medication improved his tremor symptoms. He was taking propranolol 40 mg per day some improvement in his tremor. He reported balance difficulties with falling and stumbling over the prior 3–4 months.

He was diagnosed with 48,XXYY syndrome at 14 years of age due to a history of a borderline Intelligent Quotient (IQ), autism spectrum disorder, and mild dysmorphic features. He also had sleep apnea, seizures, esophageal spasms, and hypogonadism. Medications included testosterone injections, carbamazepine, methylphenidate, hyoscymamine sulfate, and cetirizine. His father and 4 uncles had tremor. Neurological examination showed persistent but moderate gaze-evoked nystagmus and mild dystarthisia. He had postural and kinetic tremor (Fig. 1), with one step deviation on tan-
<table>
<thead>
<tr>
<th>Case</th>
<th>Age</th>
<th>Motor CRST</th>
<th>Highest CRST Score</th>
<th>Total ICARS Score</th>
<th>Age at tremor onset</th>
<th>Family history of tremor?</th>
<th>Neurological exam descriptive features</th>
<th>Other medical features</th>
<th>Other psychological features</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>22</td>
<td>12</td>
<td>2 (action tremor, handwriting)</td>
<td>21</td>
<td>2 (multiple items)</td>
<td>7</td>
<td>Yes</td>
<td>Kinetic and postural tremor, nystagmus, mild dysarthria</td>
<td>Epilepsy, sleep apnea, esophageal spasms, hyponadism</td>
</tr>
<tr>
<td>2</td>
<td>13</td>
<td>18</td>
<td>2 (postural tremor)</td>
<td>20</td>
<td>2 (ocular pursuits, spread feet)</td>
<td>4</td>
<td>Yes</td>
<td>Kinetic and postural tremor, saccadic pursuits</td>
<td>Cystic fibrosis, G.E. reflux</td>
</tr>
<tr>
<td>3</td>
<td>17</td>
<td>19</td>
<td>3 (action tremor)</td>
<td>13</td>
<td>3 (finger to nose)</td>
<td>10</td>
<td>No</td>
<td>Intention and postural tremor, widened stance</td>
<td>Scoliosis, asthma/allergies, mitral valve prolapse, hyponadism</td>
</tr>
<tr>
<td>4</td>
<td>24</td>
<td>10</td>
<td>2 (intention tremor)</td>
<td>15</td>
<td>2 (multiple items)</td>
<td>16</td>
<td>No</td>
<td>Mild postural and kinetic tremor, nystagmus, mild gait ataxia</td>
<td>Seizures in childhood, cryorchidism, inguinal hernia repair, hyponadism</td>
</tr>
<tr>
<td>5</td>
<td>13</td>
<td>8</td>
<td>2 (action tremor)</td>
<td>10</td>
<td>2 (intention tremor)</td>
<td>3</td>
<td>Yes</td>
<td>Mild postural and kinetic tremor, dysarthria, widened stance</td>
<td>Strabismus, kyphosis, constipation</td>
</tr>
<tr>
<td>6</td>
<td>16</td>
<td>6</td>
<td>1 (multiple items)</td>
<td>8</td>
<td>2 (dysarthria)</td>
<td>12</td>
<td>No</td>
<td>Mild kinetic and postural tremor, dysarthria</td>
<td>Asthma/allergies, Gilbert’s disease, scoliosis, hyponadism</td>
</tr>
<tr>
<td>7</td>
<td>26</td>
<td>12</td>
<td>2 (intention tremor)</td>
<td>15</td>
<td>2 (finger to finger, finger to nose)</td>
<td>15</td>
<td>Yes</td>
<td>Mild kinetic and postural tremor, dysarthria, mild gait ataxia</td>
<td>Radionuclear synostosis, seizures in childhood, strabismus, hyponadism</td>
</tr>
<tr>
<td>8</td>
<td>19</td>
<td>4</td>
<td>1 (multiple items)</td>
<td>3</td>
<td>1 (multiple items)</td>
<td>9</td>
<td>No</td>
<td>Unilateral kinetic tremor, widened stance</td>
<td>Hypothyroidism, pes planus, hyponadism</td>
</tr>
<tr>
<td>9</td>
<td>19</td>
<td>4</td>
<td>1 (multiple items)</td>
<td>6</td>
<td>1 (multiple items)</td>
<td>11</td>
<td>Yes</td>
<td>Mild postural and kinetic tremor, dysarthria</td>
<td>Asthma in childhood, hyponadism</td>
</tr>
<tr>
<td>10</td>
<td>14</td>
<td>9</td>
<td>1 (multiple items)</td>
<td>9</td>
<td>1 (multiple items)</td>
<td>9</td>
<td>No</td>
<td>Kinetic tremor, leg dystonia, gait ataxia</td>
<td>Asthma, hyponadism</td>
</tr>
</tbody>
</table>

1. CRST, Clinical Rating Scale for Tremor. Higher scores indicate increased symptoms.
2. ICARS, International Cooperative Ataxia Rating Scale. Higher scores indicate increased symptoms.
3. This feature was noted as the primary indication for genetic testing leading to patient being diagnosed with XXY.
4. Early speech delays were present in all patients. Seven of the ten had delayed gross motor milestones.
5. Hyponadotropic hyponadism (testosterone deficiency) characteristic of XXY syndrome, 6/8 subjects were on testosterone replacement therapy.
6. Attention Deficit Hyperactivity Disorder.
7. Gastroesophageal reflux.
dem gait. Evaluation of his tremor using the CATSYS system showed that his tremor frequency was 6.5 Hz ± 1.3 Hz.

Case 2

A 13-year-old right-handed male presented with tremor that began at 4 years of age. He reported shaking with handwriting and eating, with worsening of tremor during times of sleep deprivation or increased stress. His medical history included a diagnosis of cystic fibrosis at 3 years of age when he presented with rectal prolapse. He was diagnosed with 48,XXYY at 7 years of age due to learning disabilities and attention deficit hyperactivity disorder. He had not been on medications for tremor, and his medications were sertraline, omeprazole, and inhaled tobramycin. Neurological examination showed saccadic ocular pursuit and postural tongue tremor. He had moderate modification of speech fluency. He had postural tremor and kinetic tremor.

Case 3

A 17-year-old right-handed male presented with shaking of the hands since 10 years of age. He noticed his hands shaking when biting his fingernails, writing, or eating ice cream. He no longer used glass cups due to the severity of tremor and the tremor worsened when he was nervous. He also reported worsening problems with his balance. He was diagnosed with 48,XXYY syndrome at 4 years of age due to language delays. His medical history was significant for asthma, scoliosis, hypogonadism, anxiety, and autism. He had no family history of tremor. His medications included fluoxetine and testosterone gel. His examination showed saccadic ocular pursuit and postural and kinetic tremor. He had a widened stance, but was able to tandem without deviations.

DISCUSSION

In this study, 10 males with 48,XXYY were examined and had tremor of varying severity. The tremor was kinetic, postural, or both, and was usually rated as mild on the CRST. The presence of tremor in these males is consistent with other reports from our group, in which a recent review of 95 cases of 48,XXYY syndrome described kinetic tremor in 8% of individuals less than 10 years of age, 62% of individuals aged 11–20 years, and in 71% of individuals were adults.¹ In the majority of cases, the tremor most commonly begins in early adolescence. The patients in this study described worsening of tremor over time, which was corroborated by family, but this has not been studied in a longitudinal manner. There was no significant correlation between age and CRST/ICARS scores in our sample. Although the sample size was small, there were also no significant differences in CRST and
ICARS scores between those with and without a family history of tremor.

Baughman first described “essential tremor” in two 47,XXX males in 1969,1 and Daly described intention tremor in 10/12 males with 47,XXX.14 Tremor in 47,XXX and 47,XXY males was subsequently quantified in a blinded, controlled study using tremor recording equipment, in which physiologic tremor was found in 83% of the 47,XXX males and 64% of the 47,XXY males. Intention tremor was less frequent, although present in 50% of 47,XXX and 57% of 47,XXY.15 Based on these studies, tremor may be a common feature in the phenotype of males with sex chromosome aneuploidy, yet is often not included in clinical descriptions of these genetic syndromes.16-18

The tremor in sex chromosome aneuploidy is not consistent with essential tremor (ET) or other well-defined tremor disorders. The diagnostic criteria for ET require the presence of both postural and kinetic tremor, the exclusion of “other basal ganglionic disorders,” the absence of psychogenic features,19 and require the exclusion of cerebellar and drugs or conditions known to worsen physiologic tremor.20 ET is rare in childhood (1/500 children).21 The age of onset of tremor, associated chromosomal abnormality, and presence of other cerebellar signs in our cases, suggest that the tremor associated with 48,XXXXY is a different entity than ET.

Volumetric neuroimaging data are not yet available for 48,XXXXY; however, studies in 47,XXXY show a significantly decreased caudate volume compared with 46,XY (in addition to smaller frontal and temporal lobe volumes),22 as well as decreases in cerebellar lobe volumes.23 Thus, basal ganglionic or cerebellar dysfunction may be involved in tremor symptoms in both 47,XXX and 48,XXXXY. In 48,XXXXY, review of 35 brain MRI’s obtained for clinical reasons showed a 46% incidence of T2 white matter hyperintensities and a 23% incidence of enlarged ventricles. In that study, males with XXXY with white matter hyperintensities did not have increased rates of tremor when compared with those without white matter findings.1

The phenotype of 48,XXXXY and other forms of supernumerary sex chromosome aneuploidy are thought to result from gene dosage effects of X chromosome genes that escape X-inactivation and/or overexpression of Y chromosome genes from the extra sex chromosomes. However, the specific genes associated with the abnormal phenotypic features have not been identified. We hypothesize that tremor in 48,XXXXY syndrome results from dysregulation of a sex chromosome gene, leading to altered neurodevelopment or neurophysiology and subsequent tremor. Similar findings of tremor in both 47,XXX and 47,XXXXY suggest that overexpression of genes homologous on the X and Y chromosomes (pseudoautosomal regions)24 are likely involved.10 Understanding gene dysregulation in 48,XXXXY might serve to enhance understanding regarding the etiology of kinetic and postural tremor in these patients and other patients with sex chromosome disorders.

There are several genes on the X chromosome that have been associated with tremor in other disorders. Fragile X-associated tremor/ataxia syndrome (FXTAS) is associated with tremor, ataxia, and peripheral neuropathy due to elevated levels of mRNA from the X-chromosome FMRI gene in individuals with the fragile X premutation.25,26 Our subjects have a similar tremor and some subjects manifested cerebellar signs, such as mild gait ataxia, nystagmus, and dysarthria. However, the early age of presentation and lack of neuropathic features suggest that the tremor is caused by a different mechanism. Also, other studies suggest that the FMRI gene is always X-inactivated on the second X-chromosome in males with 47,XXX.27,28 Interestingly, a recent case report of a male presenting with atypical kinetic tremor being evaluated for FXTAS was instead found to have 47,XXX.29

Other X-chromosome disorders associated with tremor are located in the Xq22-27 region, and include Pelizaeus-Merzbacher disease (mutation of the PLP1 gene), Cabezas syndrome (X-linked mental retardation with short stature and hypogonadism; CUL4B gene), and leukoencephalopathy with chondroplasia.30-32 X-linked Spinal Bulbar Muscular Atrophy (Kennedy’s disease) results from a polyglutamine expansion mutation in the androgen receptor gene on the X chromosome and is also associated with tremor and hypogonadism.33 Although these disorders share some clinical features with 48,XXXXY such as onset of tremor in childhood, cognitive deficits, and/or hypogonadism, they also have more significant neurologica impairments and/or more progressive neurological disease than our 48,XXXXY patients. The mechanism of hypogonadism is also different. Additionally, with the exception of some cases of Pelizaeus-Merzbacher disorder in which PLP1 duplication occurs, genetic mechanisms underlying the pathophysiology of these conditions do not involve increased gene dosage. The association of hypogonadism and tremor in Cabezas syndrome and Kennedy’s disease is also interesting; however, it is important to point out that 47,XXY is not associated with hypogonadism and most likely shares a common tremor pathophysiology with 48,XXXXY.
Gens on the Y chromosome have not yet been linked to tremor.

Current medical practice significantly under ascertain
tances cases of sex chromosome aneuploidy, especially
in the pediatric population. It is estimated that up to
75% of individuals with 47,XXX and 88% of 47,XY
remain undiagnosed in their lifetime, with less than
half of known cases diagnosed before adulthood.34
These disorders are very common, with a prevalence of
1:650 for 47,XXX and 1:1,000 for 47,XY. The
48,XXYY has a lower prevalence rate (1:18,000) and
the rate of lifetime diagnosis is unknown. Clinically,
the presence of tremor in a patient with a history of
ear development/delay, learning disabilities, tall
 stature, or associated physical features such as micro-
orchidism should prompt chromosome analysis to
evaluate for sex chromosome aneuploidy. Future studies
in this disorder may include prevalence and natural
history studies, gene expression studies, medication trails,
and direct comparison with patients with ET.

LEGENDS TO THE VIDEO

Segment 8. All three cases demonstrate postural
tremor and kinetic tremor with finger-to-nose
pouring water. There was no tremor at rest.

Acknowledgments: We acknowledge grant support by
Bonnity-Stanton Foundation, The XXYY Project, K23
NS052487 for D.A.H., and UC-Davis M.N.D. Institute. We
acknowledge P. Adams for technical assistance. We thank all
participants and their families. N.R.T. currently receives
research support from the University of Colorado CTRC and
The Children’s Hospital Research Institute.

Author Roles: Nicole Tartaglia: Research Project: Concep-
tion, obtaining, funding, organization, and execution; sta-
tistical analysis: Execution; Manuscript: Writing and revi-
sions. Martyna Borodaytsky: Research Project: Organization,
execution, and records review; Manuscript: Review, critique,
revisions. Deborah Hall: Research Project: Execution; statisti-
cal analysis: Execution, video edition; Manuscript: Writing and revisions.

REFERENCES

drome: medical and psychological features. Am J Med Genet A
2008;146:1509–1522.
2. Visnosak J, Graham JM Jr, Klinefelter syndrome and other sex
chromosome aneuploidies. Orphanet J Rare Disease 2006;1(22).
syndrome in a boy with essential tremor. Comparison with 120
cases from the literature. Monatsschrift Kinderheilkd 1992:140:
216–219.
4. Baughman F, Mann JD. Ascertainment of seven YY males in a
5. Izumi S, Tsabbaras A. Improvement of peripheral neuropathy by
testosterone in a patient with 48,XXXY syndrome. Tokai J Exp
6. Botlhokwabser E, Meyer M, Deonas T, Klinefelter syndrome and
1969;2:545.
rological aspects of two patients with non-mosaic and mosaic
polysoyms of the X and Y chromosomes. Neuroni Neurochir Pol
1999;33:169–175.
9. Telferan A, Boockvar J, Simuni T, Jaggi J, Skolnick B. Balthu-
G. Efficacy of unilateral deep brain stimulation of the thalamic
tremor interneuronal nuclei in a patient with bilateral tremor
associated with klinefelter’s (2003). J Neurol Neurosurg Psychiat
2005;76:12–12.
11. Fahn S, Tolosa E, Marin C. Clinical rating scale for tremor. In:
Janovic J, Tolosa E, editors. Parkinson’s disease and movement
p 225–234.
tive ataxia rating scale for pharmacological assessment of the
cerebellar syndrome. The Ataxia Neurophysiology Committee of
motor symptoms using the CATSYS computerised neuromotor
Klinefelter syndrome. In: Management of Genetic Syndromes. 2nd
17. Bojesen A, Grahovcht CH. Klinefelter syndrome in clinical prac-
18. Geerts M, Steyaert J, Fryer JP. The XXYY syndrome: a follow-up
study on 38 boys. Genet Counsel (Geneva, Switzerland) 2003;14:
267–279.
19. Louis E, Ford B, Lee H, Andrew H, Cameron G. Diagnostic cri-
eria for essential tremor: a population perspective. Arch Neurol
W, editors. Movement disorders. 2nd ed. New York: McGraw-
21. Jankovic J, Madinett J, Vuong K. Essential tremor among chil-
22. Giedd JN, Caslen LS, Wallace GL, et al. XXY (Klinefelter syn-
drome): a pediatric quantitative brain magnetic resonance imag-
23. Lemoot RK, Shaw P, Clason LS, Mackie S, Pierson R, Giedd
JN. Comparison of cerebellar anatomy in a pediatric XXY popu-
lation to XXY males with and without ADHD. J Intellect Disabil
24. Graves JA, Wakefield MJ, Toder R. The origin and evolution of
the pseudoautosomal regions of human sex chromosomes. Hum
25. Hagerman PJ, Hagerman RJ. Fragile X-associated tremor/ataxia
26. Silver-Krasinski E, Goetz CG, Leehey MA, et al. Neuropathic fea-
tures in fragile X premutation carriers. Am J Med Genet A
27. Paduch D. Fast start high fidelity PCR system simplifies study of
28. Pena SD, Sturzeneker R. Molecular barcodes: methylation-
specific PCR of the human X-linked gene FMR-1 for diagnosis