

Targeted Next-Generation Sequencing Panel Reveals Differences in Mutational Patterns between Endometrial Cancer Molecular Classifier Subgroups

Amy Guimarães-Young MD PhD¹, Lynelle P Smith MD¹, Dara L Aisner MD PhD¹, Rebecca J Wolsky MD¹, Bradley R Corr MD², Kurtis Davies PhD¹

Background

Four molecular subgroups of endometrial carcinomas (ECs) are currently recognized based on prognostic classification derived from The Cancer Genome Atlas (TCGA) study using multi-omic analysis:

- Hypermutated (Mismatch repair deficient, MMRd)
- Ultramutated (*POLE* mutated)
- Copy number high (p53 abnormal)
- Copy number low (No specific molecular profile, NSMP)

These subgroups can be recapitulated by a targeted testing approach using the Proactive Molecular Risk Classifier for Endometrial Cancer (ProMisE) stratification. The National Comprehensive Cancer Network (NCCN) guidelines currently encourage the use of ancillary studies to detect aberrancies in POLE, TP53, and MMR/MSI. Here, we assign ProMisE molecular subgroups using combined immunohistochemistry (IHC) and next generation sequencing (NGS). We demonstrate the ability to ascribe defined molecular spectra to each subtype. Furthermore, we demonstrate preliminary data to suggest KRAS may be associated with more advanced disease.

Methods

From November 2020 to December 2021, 188 EC specimens across all stages and histotypes underwent molecular subtyping using a combination of p53 and MMR IHC and NGS with a customized Archer VariantPlex assay designed to include POLE (Fig. 1, Table 1). Unadjusted mutational load was derived by counting the absolute number of confirmed mutations across roughly 45Kb of targeted sequence from 56 genes. Variant allele frequency (VAF) of TP53 mutations was used as a surrogate measure for loss of heterozygosity (LOH). Statistical analysis of mutational load was performed using the Kruskal-Wallis test with post hoc multiple comparisons correction. PI3K pathway alterations were assessed using the Chi-square test. Lymphovascular invasion (LVI) and KRAS status was analyzed using Fisher's exact test. All statistical analyses were performed with GraphPad Prism version 9.4.1.

Table 1. Breakdown of endometrial cancers by histotype				
Histotype	Number of Specimens			
Endometrioid	149			
Serous	17			
Carcinosarcoma	15			
Undifferentiated/ Dedifferentiated	4			
Clear cell	2			
Mesonephric-like adenocarcinoma	1			
Total	188			

Table 2. Distribution of Molecular Subgroups by Endometrial Cancer Histotype							R	
Histotype	MMRd	POLE	p53	NSMP	Total (histotype)			
Endometrioid	46 (24.8%)	10 (4%)	10 (6.7%)	84 (56.4%)	149	Table 5. p53-	classified tu	umor
Serous	n/a	n/a	17 (100%)	n/a	17	Molecular	# tumors w	
Carcinosarcoma	1 (6.7%)	n/a	12 (80.0%)	1 (6.7%)	15	subgroup	<i>TP53</i> mut	Ave
Undifferentiated/ Dedifferentiated	4 (100%)	n/a	n/a	n/a	4	MMRd	9	29.7
Clear cell	n/a	n/a	1 (50%)	1 (50%)	2	POLE	4	26.5
Mesonephric-like adenocarcinoma	n/a	n/a	n/a	1 (100%)	1	p53	40	47.3
Total (Molecular subtype)	51 (27.1%)	10 (5.3%)	40 (21.3%)	87 (46.3%)	188	KRAS status wa 4). KRAS muta	is associated tions were ot	with I serve
								-

Dual classifiers comprised 17.6% (9/51) of MMRd and 40% (4/10) of POLE tumors (Table 2). For all analyses, MMRd-p53 and POLE-p53 tumors were incorporated into the MMRd and POLE molecular subgroups, respectively.

The POLE (ultramutated) subgroup had a greater average mutational load than the MMRd (hypermutated) subgroup (P=0.0097) (Fig. 2). Similarly, the molecular load of MMRd subgroups was greater than p53 and NSMP (P=0.001 and P=0.0064, respectively). No difference was observed between p53 and NSMP. When evaluated by histotype, endometrioid tumors had more mutations than serous tumors (P=0.0043) (Fig. 3).

Table 3. Molecular subgroups harbor PI3K pathway activation: <i>PTEN, PIK3CA, PIK3R1,</i> &/or <i>ATK1</i> mutations*					
Molecular subgroup	One gene	Two genes	Three genes	Four genes	PI3K Pathway Activation
MMRd	9	35	4	1	96.1%
POLE	2	6	2	0	100%
p53	18	10	0	0	70%
NSMP	14	64	5	0	95.4%
No. altered tumors	43	115	11	1	170/188 (90.4%)

*No statistically significant differences in activating mutations was identified among the four molecular subgroups (P=0.6373).

Table 4. The p53 molecular subgroup harbors fewer kinase and B-catenin activating mutations

Kinase and D-caterini activating indiations						
Molecular subgroup	KRAS	FGFR2	ERBB2	BRAF	CTNNB1	Activating Mutations*
MMRd	16 (31.4%)	11 (21.6%)	5 (9.8%)	0 (0%)	3 (5.9%)	56.9%
POLE	3 (30%)	2 (20%)	0 (0%)	3 (30%)	2 (20%)	70%
p53	5 (12.5%)	2 (5%)	0 (0%)	0 (0%)	2 (5%)	22.5%
NSMP	24 (27.6%)	11 (12.6%)	1 (1.1%)	3 (3.4%)	27 (31%)	67.8%
*Percentages represent the proportion of tumors with one or more activating						
mutations. 16% of tumors with activating mutations harbored mutations in more						

than one gene. Only single gene activation was observed in the p53 subgroup.

¹Department of Pathology, ²Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO

lymphovascular invasion (P=0.0012) (Fig. ed in 46 (32.4%) of EC tumors with no significant difference in frequency Figure 4. KRAS mutation status positively among groups (P=0.1882) (Fig. 5). associates with lymphovascular invasion

- subclonality in the MMRd and POLE subgroups. Dual classifier tumors may represent *TP53* 'passenger' events rather than genomic instability.
- KRAS mutations may be associated more advanced disease, as demonstrated by positive association with LVI and lymph node (data not shown) status.
- molecular subgroups.

Cancer Genome Atlas Research. Integrated genomic characterization of endometrial carcinoma. Nature 2013;497(7447):67-73 doi: 10.1038/nature12113. Leon-Castillo A, et al. Molecular Classification of the PORTEC-3 Trial for High-Risk Endometrial Cancer: Impact on Prognosis and Benefit From Adjuvant Therapy. J Clin Oncol 2020;38(29):3388-97 doi: 10.1200/JC0.20.00549 Talhouk A et al. Confirmation of ProMisE: A simple, genomics-based clinical classifier for endometrial cancer. Cancer 2017;123(5):802-13 doi: 10.1002/cncr.30496.

Results

Figure 3. Endometrioid tumors have higher mutational loads than Serous tumors

esults

rs may preferentially undergo LOH

Percent cases with *TP53* VAF % rage (min, max)

7% (6.6%, 72.5%)

TP53 VAF >50%

11.1%

5% (14%, 32.2%)

3% (5.5%, 94.4%)

42.5%

0%

Table 6. G12D & G12V are the
most frequent KRAS variants

KRAS	Number of	% KRAS
variant	occurrences	mutations
G12D	13	28.3%
G12V	12	26.1%
G13D	7	15.2%
G12C	4	8.7%
G12A	3	6.5%
G13C	3	6.5%
Q61H	2	4.3%
A59G	1	2.2%
E63K	1	2.2%
Total	46	100%

Conclusions

• ProMisE classification can be feasibly incorporated into standard clinical workflow. • NGS may identify clinicopathologic trends and potentially targetable alterations. • p53 VAFs may represent a combination of higher LOH in the p53 subgroup and

• Limitations of this study include small sample size for many of the tumor histotypes and

References