

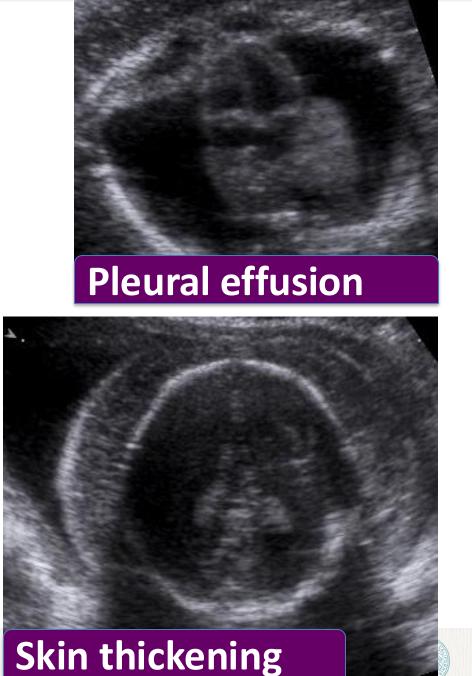
Mary E Norton MD
University of California, San Francisco

University of Colorado MFM Imaging Conference September 27, 2024

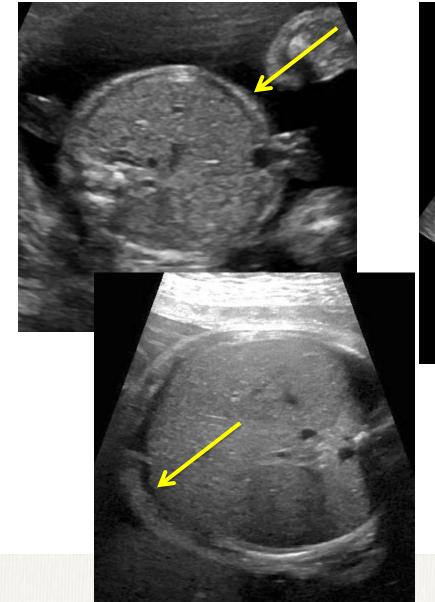
Disclosures

- None
- Research funding from the Fetal Health Foundation

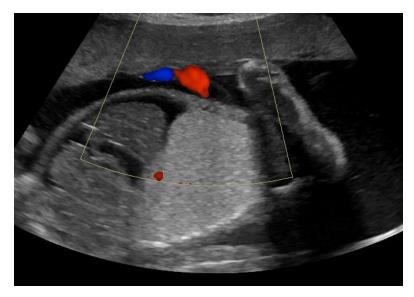
Hydrops Fetalis (ὕδωρ)



- Pathologic fluid collection in fetal soft tissues and serous cavities
- Two or more abnormal fluid collections
 - Ascites, pleural or pericardial effusions, skin edema (>5mm)
 - May also have placentomegaly (≥4mm in 2nd trimester or ≥6mm in 3d)
 - Polyhydramnios (>8 cm DVP)



Hydrops:
Two or
more of
these
effusions



Ascites vs Pseudo-ascites



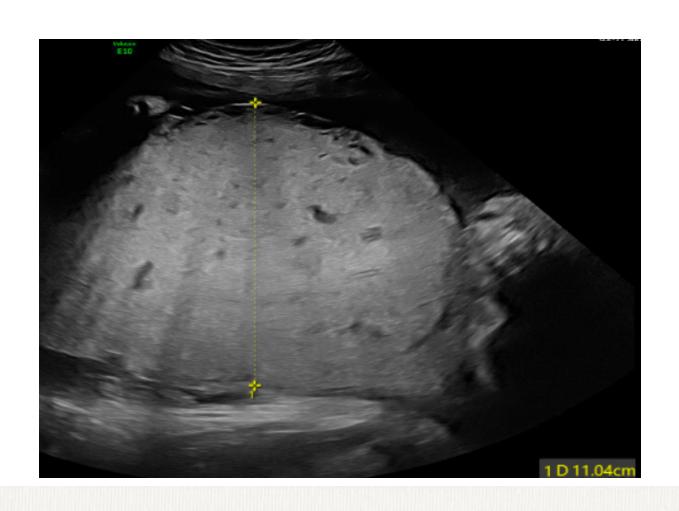
Pericardial and pleural effusions

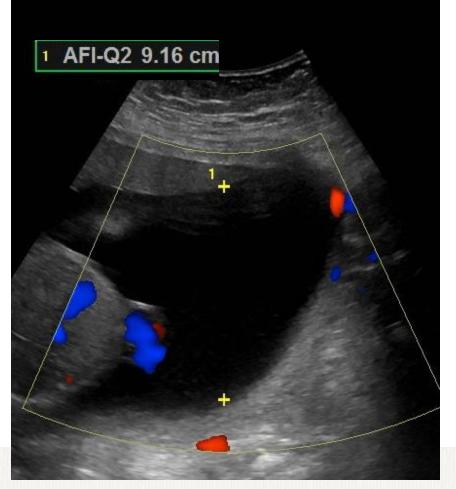
Pleural effusions

Unilateral

Bilateral

Skin thickening (≥5mm)





Placental thickening (\geq 4mm or \geq 6 mm)

Polyhydramnios (DVP >8cm or AFI >25cm)

Hydrops Fetalis (ὕδωρ)

1/3000 pregnancies

10% immune

90% non-immune

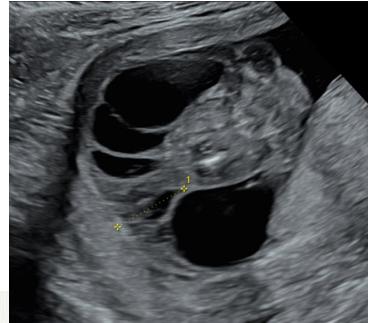
- Extensive differential diagnosis
- Historically, diagnosis has been made in <50% of cases

There are many causes of nonimmune hydrops: Final common pathway of many conditions

0	Cardiovascular	17-35%	○ GI	0.5-4%
0	Chromosomal	7-16%	 Lymphatic dysplasia 	5-6%
0	Hematologic	4-12%	Tumors	2-3%
0	Genetic	5-10%	 Skeletal dysplasia 	3-4%
0	Infectious	5-7%	 Syndromic 	3-4%
0	Thoracic	6%	 Inborn errors 	1-2%
0	TTTS	3-10%	 Miscellaneous 	3-15%
0	Urinary Tract	2-3%	Unknown	15-25%

Causes of nonimmune hydrops

- Chromosomal
 - 45,X (Turner syndrome); Trisomy 21 (Down syndrome)
 - ➤ Most common cause early in pregnancy
- Cardiovascular
 - Arrhythmias, structural, cardiomyopathies, tumors, vascular
- Genetic
 - Noonan syndrome, inborn errors of metabolism
- Hematologic
 - Anemia (acquired or inherited)
 - ➤ Many are treatable
- Infectious
 - Parvovirus, CMV, syphilis, toxoplasmosis

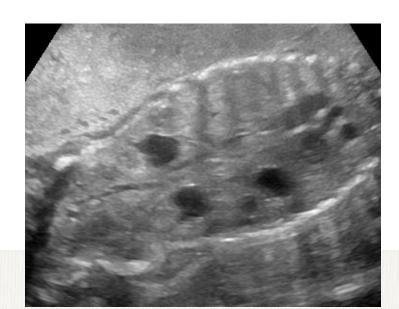


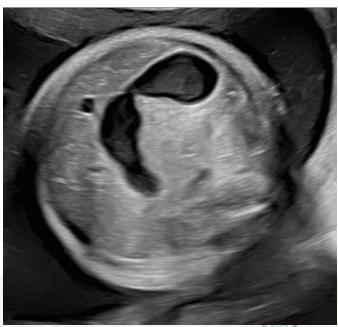
Chromosomal abnormalities associated with hydrops

- 45,X (Turner syndrome)
- 47,+21 (Down syndrome)
- Trisomies 13 and 18
- Triploidy

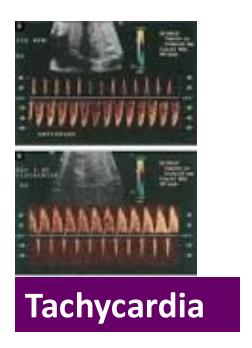
Turner syndrome (45,X or monosomy X)

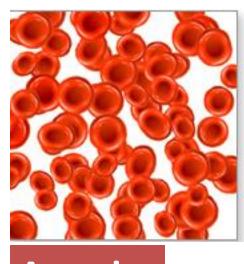
- Cystic hygroma
- Skin edema
- Generalized hydrops
- Left-sided heart defects

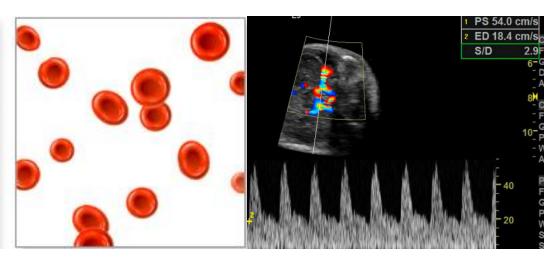



Down syndrome (trisomy 21)

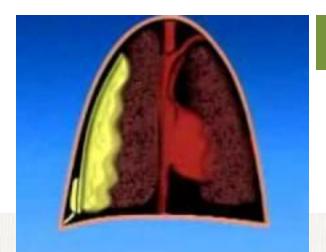
- Enlarged nuchal translucency
- Cardiac anomalies (atrioventricular septal defects)
- Duodenal atresia
- Hydronephrosis







There are a few treatable causes of NIHF

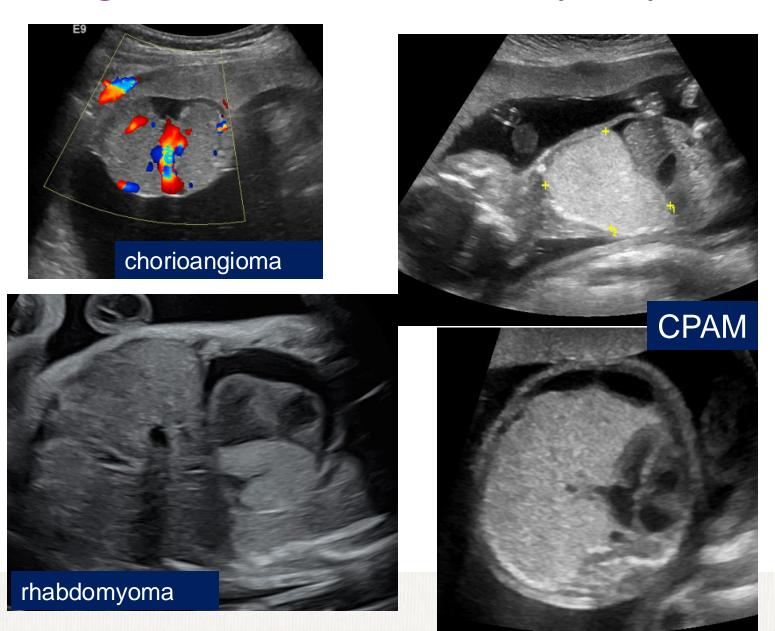


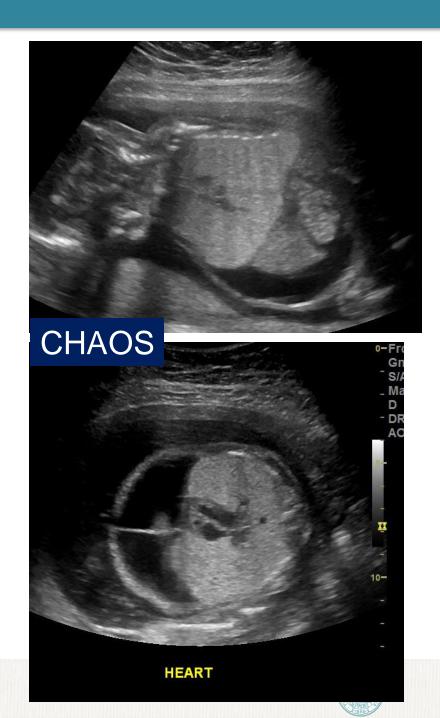
Anemia

Pleural Effusion

Chest mass

		•
	OT FOTAL	Anemia
Causes	OI I Clai	Allellia


Categories	Cause
Immune	Red blood cell alloimmunization Rh Atypical antigens
Infectious	Parvovirus CMV Toxoplasmosis Syphilis
Genetic	Metaboic diseases (e.g. Mucopolysaccharidosis type VII, Niemann-Pick disease, Gaucher disease) Blackfan-Diamond anemia Fanconi anemia Alpha-thalassemia Pyruvate kinase deficiency G-6-PD deficiency
Other	Aneuploidy TTTS; Twin anemia-polycythemia sequence Fetomaternal hemorrhage Maternal acquired red cell aplasia


Fetal anemia can be treated

Large masses can cause hydrops

Evaluation of non-immune hydrops

Review family, medical, and obstetric history including genetic diseases and viral exposures

Maternal labs: indirect Coombs, Kleihauer-Betke, cfDNA Risk factors for alpha thalassemia (MCV, ancestry)

Send molecular testing for alpha thalassemia if MCV <80 fL or high-risk ancestry

Detailed ultrasound including fetal echo, MCA Dopplers, and evaluation of placenta (chorioangioma)

Structurally normal

MCA Dopplers >1.5 MoMa

Structurally abnormal

Diagnostic genetic testing with CMA or karyotype; PCR for parvovirus, CMV, and toxoplasmosis; review syphilis testing^b

Diagnostic genetic testing with CMA or karyotype; offer PCR for parvovirus, CMV, and toxoplasmosis; review syphilis testing^b

Diagnostic genetic testing with CMA or karyotype

If prior evaluations non-diagnostic, offer gene panel^c or exome sequencing

If prior evaluations non-diagnostic, offer gene panel^c or exome sequencing

If prior evaluations non-diagnostic, offer gene panel^c or exome sequencing

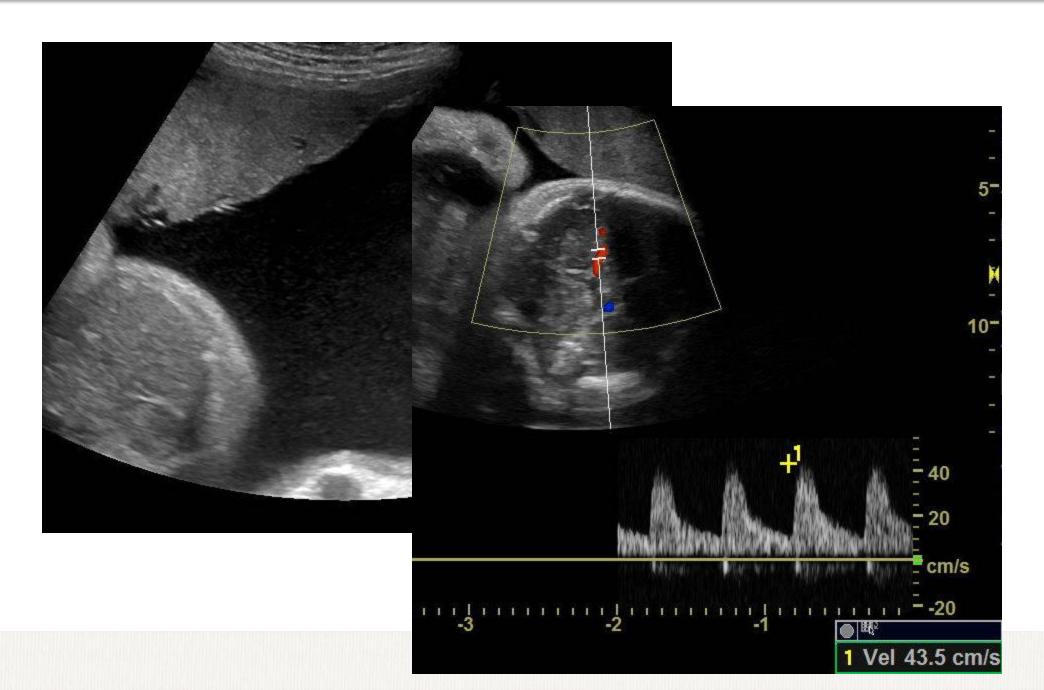
Prognosis and Recurrence of Hydrops by Cause

Cause	Prognosis	Recurrence risk
Chromosomal	Poor	About 0.5-1%
Cardiac	Poor	2-3%
Other structural	Usually poor	Varies
Pleural effusion	Good with treatment	Low
CPAM	Good with treatment	Low
Hematologic (thalassemia)	Poor	25%
Anemia from alloimmunization	Good with treatment	50-100%
Metabolic	Poor	25%
Parvovirus	Usually good	0%

38 y.o. G2P1

- Seen for CVS at 11 wks
- NT 3 mm

- 46XX
- Normal microarray
- Normal 20 week scan



32 wks: US for size greater than dates

Admitted for observation

- Delivered after corticosteroids
- Baby critically ill at birth with pulmonary hypertension
- Died at 5 days of age
- PTPN11 testing positive, consistent with a diagnosis of Noonan Syndrome
- Parent's testing negative

www.nature.com/ejhg

ARTICLE

Prenatal diagnostic testing of the Noonan syndrome genes in fetuses with abnormal ultrasound findings

Ellen A Croonen¹, Willy M Nillesen², Kyra E Stuurman³, Gretel Oudesluijs⁴, Ingrid MBM van de Laar⁴, Liesbeth Martens², Charlotte Ockeloen², Inge B Mathijssen⁵, Marga Schepens², Martina Ruiterkamp-Versteeg², Hans Scheffer², Brigitte HW Faas², Ineke van der Burgt² and Helger G Yntema*,²

 17% of fetuses with enlarged NT and/or hydrops features had variants in one of Noonan genes

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Exome Sequencing for Prenatal Diagnosis in Nonimmune Hydrops Fetalis

T.N. Sparks, B.R. Lianoglou, R.R. Adami, I.D. Pluym, K. Holliman, J. Duffy, S.L. Downum, S. Patel, A. Faubel, N.M. Boe, N.T. Field, A. Murphy, L.C. Laurent, J. Jolley, C. Uy, A.M. Slavotinek, P. Devine, U. Hodoglugil, J. Van Ziffle, S.J. Sanders, T.C. MacKenzie, and M.E. Norton, for the University of California Fetal–Maternal Consortium and the University of California, San Francisco Center for Maternal–Fetal Precision Medicine*

N=127 cases after non-diagnostic karyotype or microarray

Genetic causes of hydrops in cases with normal karyotype

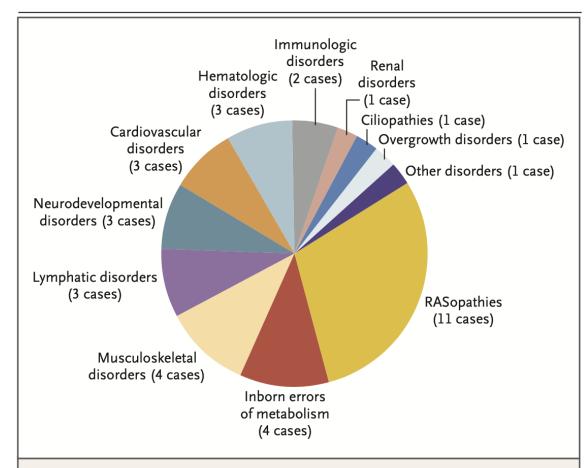


Figure 2. Categories of Genetic Disorders Detected through Exome Sequencing in Cases of NIHF.

RASopathies were defined as disorders affecting the RAS-MAPK cell-signaling pathway.

- Diagnostic variant in 29% (37/127)
- Among diagnostic variants:
 - 30% RASopathies (e.g.Noonan)
 - 11% each inborn errors and musculoskeletal
 - 8% each lymphatic, neurodevelopmental, cardiovascular, hematologic
 - Many others

Exome sequencing for NIHF

Diagnostic yield by NIHF phenotypes:

- Isolated enlarged NT: 7%
- Single abnormal fetal fluid collection: 10%
- ≥2 abnormal fluid collections: 34%

Online ahead of print.

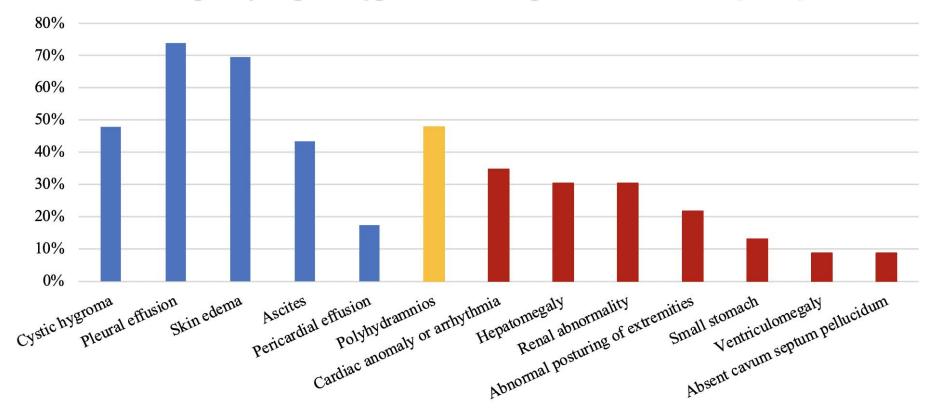
Fetal hydrops and the Incremental yield of Next generation sequencing over standard prenatal Diagnostic testing (FIND) study: prospective cohort study and meta-analysis

```
F Mone <sup>1</sup> <sup>2</sup>, R Y Eberhardt <sup>3</sup>, M E Hurles <sup>3</sup>, D J McMullan <sup>4</sup>, E R Maher <sup>5</sup>, J Lord <sup>3</sup>, L S Chitty <sup>6</sup>, E Dempsey <sup>7</sup>, T Homfray <sup>8</sup>, J L Giordano <sup>9</sup>, R J Wapner <sup>9</sup>, L Sun <sup>10</sup>, T N Sparks <sup>11</sup>, M E Norton <sup>11</sup>, M D Kilby <sup>1</sup> <sup>2</sup>
```

- N=306 cases
- Incremental yield:
 - 29% for all NIHF
 - 30% were RASopathies (Noonan, etc)
 - 24% for isolated NIHF
 - 38% for NIHF+structural anomalies

RASopathies

- Family of disorders with shared genetic basis and clinical features
- Noonan, Costello, cardiofaciocutaneous syndrome, neurofibromatosis
 - **Prenatal:** Polyhydramnios, lymphatic dysplasia, macrosomia, macrocephaly, cardiac and renal anomalies, big NT, NIHF, jugular sacs, hypertrophic cardiomyopathy
 - Postnatal: Dysmorphic features, short stature, cardiac anomalies or arrhythmias, developmental delays, coagulation defects, pectus carinatum/excavatum, malignancy, hypertrophic cardiomyopathy



Fetal phenotypes of RASopathies

Frequency of phenotypic features on prenatal ultrasound (N=23)

Blue = abnormal fetal fluid

Yellow = abnormal amniotic fluid

Red = fetal structural abnormalities

Treatable Causes of NIHF

- Cardiac tachyarrhythmias
 - Anti-arrhythmics
- Fetal anemia due to parvovirus, FMH
 - In utero transfusion
- Large unilateral pleural effusion
 - Drainage, shunting
- Fetal CPAM (cystic pulmonary adenomatoid malformation)
 - Corticosteroids
- Twin twin transfusion syndrome
 - Laser ablation
- Twin reversed arterial perfusion (acardiac/acephalic)
 - Radio-frequency ablation

Follow up of fetal transplantation for alpha thalassemia

Eliana at 3 weeks...

- Serial fetal transfusions
- Normal neonatal course + postnatal development

... at 2 years

The future: Fetal molecular therapies

2017-2020 2020-2023 2023 Stem Cell Transplant Alpha Thalassemia Beta Thal Major/Sickle Cell/ Others Fanconi Anemia Major In Utero ERT: **LSDs** In Utero Gene Therapy: Hemophilia, SMA, LSDs

Summary

- Hydrops is the common end stage of many different conditions
- Some have poor prognosis -- for others there is effective treatment
- Many are genetic disorders with high recurrence risk
- ➤ Particularly important to diagnose those that are treatable and those that are genetic

Thank you!

