MASS CONFUSION: DECODING ADNEXAL LESIONS IN PREGNANCY

LAUREN SAYRES, MD ASSISTANT PROFESSOR MATERNAL FETAL MEDICINE UNIVERSITY OF COLORADO

LEARNING OBJECTIVES

- How to optimize imaging of the adnexae during pregnancy
- How to identify and risk-stratify common adnexal lesions
- How to develop follow-up plans for pregnant patients with adnexal masses

STARTING WITH A CASE

A 33 y/o healthy G1P0 presents for her 20 week anatomy scan. Pregnancy uncomplicated to date.

STARTING WITH A CASE

Left adnexa

3.8x3.2x4.0cm

Describe your findings. How would you counsel her?

EPIDEMIOLOGY

- Identified in 2% of pregnant patients
 - At least 10x more frequent than in age-matched nonpregnant population, due to advent of routine obstetric ultrasonography
- 4% of these patients have bilateral masses
- Approximately 2% of masses are malignant
- Ovarian cancer is 5th most common malignancy diagnosed during pregnancy

PRESENTATION

Typically asymptomatic, or otherwise:

- Abdominal pain or pressure
- Bladder or bowel symptoms
- Palpable mass
- Acute torsion
 - Occurs with 5% of adnexal masses in pregnancy
- Elevated serum markers
 - e.g. AFP, inhibin A

TYPES OF LESIONS

Approximately in order of frequency*:

- Physiologic cysts
- Dermoids
- Paratubal and paraovarian cysts
- Endometriomas
- Fibroids
- Theca lutein cysts
- Malignant and borderline tumors

PHYSIOLOGIC CYSTS

Corpus luteum:

- Simple
- Thick-walled
- "Ring of fire"
- Up to 6cm
- Resolve by 10 weeks

Follicular cyst:

- Simple
- Thin-walled
- Up to 8cm
- Typically resolve by 20 weeks

HEMORRHAGIC CYSTS

Evolving from a functional cyst to contain a reticular echogenic pattern of "fishnet weave" or over time, a retracting clot

HEMORRHAGIC CYSTS

Caution: clot can organize and appear solid or form pseudoseptations - applying Doppler or 'wobbling' can help distinguish

artificially solid-appearing organized clot

fibrin strand with no color flow

true septum with Doppler flow

RUPTURED HEMORRHAGIC CYSTS

surrounding blood products

collapsing cyst wall

DERMOIDS

- Complex echotexture patterning, echogenic nodules, septae, posterior shadowing
- Typically do not evolve in pregnancy

PARATUBAL/PARAOVARIAN CYSTS

- Simple, avascular, sometimes with papillary projections, up to 5cm
- "Split sign" when pressure from probe to adjacent ovary applied

CYSTADENOMAS

Serous:

- Typically unilocular, can be septated
- Avascular
- Often bilateral

Mucinous:

- Multilocular
- Varying low level echoes

Both can grow, up to 10+cm, during pregnancy

ENDOMETRIOMAS

Unilocular with "ground glass" homogenous echoes

ENDOMETRIOMA

- During pregnancy, often shrink or stabilize
- However, decidualization can result in solid vascular projections

Pedunculated from uterus or arising from broad ligament (FIGO type 7 or 8)

FIBROIDS

- Well circumscribed, hypoechoic
- Complex if degenerating (more common in pregnancy)

THECA LUTEIN CYST

- Bilateral, anechoic, multiseptated cysts
- Due to HCG overstimulation (e.g. molar pregnancy, multifetal gestation)
- Regress after pregnancy

MALIGNANCIES

Epithelial carcinomas and borderline tumors

- Papillary excrescences
- Mural wall nodules
- Thick septations
- Hypervascularity

MALIGNANCIES

Germ cell tumors

- Most common: dysgerminoma
- Heterogenous
- Hyperechoic
- Vascular septae

MALIGNANCIES

Sex cord stromal tumors

- Most common: granulosa cell tumor
- Highly variable imaging, most often multilocular with solid components

OTHER UNCOMMON LESIONS

- Luteoma
- Fibroma
- Ovarian hyperstimulation syndrome
- Hydrosalpinx
- Tubo-ovarian abscess
- Metastatic nonovarian malignancy
- Heterotopic pregnancy

INTERNATIONAL OVARIAN TUMOR ANALYSIS (IOTA)

Rules for predicting a malignant tumor (M- rules)			Rules for predicting a benign tumor (B-rules)		
M1	Irregular solid tumor		B1	Unilocular	
M2	Presence of ascites		B2	Presence of solid components where the largest	
М3	At least four papillary structures			solid component has a largest diameter < 7 mm	
M4	Irregular multilocular solid tumor with largest		В3	Presence of acoustic shadows	
	diameter ≥ 100 mm		B4	Smooth multilocular tumor with largest diameter < 100 mm	
M5	Very strong blood flow (color score 4)		B5	No blood flow (color score 1)	

Only M rules = malignant

Only B rules = benign

Neither or both = inconclusive

IOTA COLOR SCORE

Score 1	Score 2	Score 3	Score 4

OVARIAN-
ADNEXAL
REPORTING
AND DATA
SYSTEM
(O-RADS)

O-RADS Group	Ultrasound Descriptors	Risk of Malignancy
O-RADS 0	Incomplete evaluation	Not stated
O-RADS 1	Normal premenopausal ovary	0%
O-RADS 2	Classic hemorrhagic cyst \geq 5 cm to <10 cm Classic dermoid cyst < 10 cm Classic endometrioma < 10 cm Unilocular smooth cyst \leq 3 cm Other unilocular smooth cyst \geq 3 cm to <10 cm	<1%
O-RADS 3	Unilocular smooth ≥ 10 cm Unilocular irregular wall Multilocular smooth CS 1–3 < 10 cm Solid smooth CS 1	1% to <10%
Multilocular smooth ≥ 10 cm CS 1–3 Multilocular smooth CS 4 Multilocular irregular O-RADS 4 Unilocular-solid no papillary projection Unilocular-solid 1–3 papillary projections Multilocular-solid CS 1–2 Solid smooth CS 2–3		10% to <50%
O-RADS 5	Unilocular-solid with \geq 4 papillary projections Multilocular-solid CS 3–4 Solid smooth CS 4 Solid irregular	50% to 100%

PERFORMANCE OF RISK STRATIFICATION

- Only study in pregnancy:
 - IOTA: excluding inconclusive masses, 88% sensitivity and 94% specificity
- Meta-analysis of 13 studies (not in pregnancy):
 - IOTA: 91% sensitivity and 86% specificity
 - **O-RADS**: 95% sensitivity and 75% specificity
- IOTA has better interobserver reliability

Any system is better than no system!

OTHER IMAGING

- Non-contrast MRI can be a safe adjunct, particularly with inconclusive, complex or large masses or to evaluate for metastatic disease
- CT exposes fetus to significant radiation but can be useful in emergent settings
- PET is rarely used in pregnancy but can modify staging and thus treatment in cases of confirmed malignancy

TUMOR MARKER ASSESSMENT

Most of these are elevated in pregnancy, affecting interpretation

Ovarian cancer	Marker used
WHO classification [12]	[11]
Epithelial tumors	CA125 (epithelial)
(serous, mucinous,	CEA (mucinous)
endometrioid, clear cell,	
transitional cell tumors,	
epithelial-stromal)	
Sex cord- stromal tumors	Estradiol
(granulosa, Sertoli)	Testosterone
	Anti-Mullerian hormone
	Inhibin A and B
Germ cell tumors	HCG
(teratoma, dysgerminomas)	AFP
	Lactate dehydrogenase
	Placental alkaline
	phosphatase (PALP)

MANAGEMENT CONSIDERATIONS

- Risks: torsion, hemorrhage, labor dystocia, malignancy progression
- Approximately 60% spontaneously resolve by postpartum period; more likely if small and simple
- Low risk for malignancy -> serially image
- Intermediate/high risk for malignancy -> referral to gynecologic oncology
- If Cesarean performed -> evaluate and remove if >5cm*

3.8x3.2x4.0cm

Left adnexa

Describe your findings. How would you counsel her?

- <5cm
- Unilocular
- Homogenous low level echoes
- Absent internal vascularity

Endometrioma!

Endometrioma!

Benign by IOTA or O-RADS 2 with <1% risk of malignancy

Endometrioma!

Benign by IOTA or O-RADS 2 with <1% risk of malignancy

More than 50% likely to resolve during pregnancy

Endometrioma!

Benign by IOTA or O-RADS 2 with <1% risk of malignancy

More than 50% likely to resolve during pregnancy

Repeat ultrasound in third trimester; refer to gynecology postpartum if persistent

IN CONCLUSION

- Assess adnexae, including with Doppler if mass is identified, during routine obstetric ultrasound
- Most adnexal masses during pregnancy are benign and will resolve spontaneously; 2% are malignant; masses also carry risk of torsion or rupture
- Use standardized language to characterize masses
- Apply risk stratification tools to determine next steps, such as serial imaging or referral to gynecologic oncology

REFERENCES

Amante S, et al. Ovarian dysgerminoma: clues to the radiologic diagnosis. Diagnostic and Interventional Radiology 2023: 29(1).

And reotti RF, et al. O-RADS US risk stratification and risk management system: A consensus guideline from the ACR ovarian-adnexal reporting and data system committee. Radiology 2019: 294.

Antil N, et al. Interobserver agreement between eight observers using IOTA simple rules and O-RADS lexicon descriptors for adnexal masses. Abdominal Radiology 2022: 47(9).

Bajaj S, et al. A pictorial review of ultrasonography of the FIGO classification for uterine leiomyomas. Abdominal Radiology 2022: 47(1).

Bromley B, et al. Adnexal masses during pregnancy: accuracy of sonographic diagnosis and outcome. Journal of Ultrasound in Medicine 1997: 16.

Cathcart AM, et al. Adnexal masses during pregnancy: diagnosis, treatment, and prognosis. American Journal of Obstetrics and Gynecology 2023: 228(6).

Causa Andrieu P, et al. Ovarian cancer during pregnancy. Abdominal Radiology 2023: 48(5).

Chiang G, et al. Imaging of adnexal masses in pregnancy. Journal of Ultrasound in Medicine 2004: 23(6).

Dede M, et al. Treatment of incidental adnexal masses at Cesarean section: a retrospective study. International Journal of Gynecologic Cancer 2007: 17.

Edell H. Incidentally found hyperreactio luteinalis in pregnancy. Radiology Case Reports 2018: 13(6).

Han J, et al. Comparison of O-RADS with the ADNEX model and IOTA SR for risk stratification of adnexal lesions: a systematic review and meta-analysis. Frontiers in Oncology 2024: 14.

Jain KA. Sonographic spectrum of hemorrhagic ovarian cysts. Journal of Ultrasound in Medicine 2002: 21(8).

Montes de Oca MK, et al. Adnexal masses in pregnancy. Obstetrical and Gynecological Survey 2021: 76(7).

Nenciu A-E, et al. Tumor markers in ovarian cancer. Journal of Systems and Software 2020: 7.

Rabiej-Wronska E, et al. Ultrasound differentiation between benign and malignant adnexal masses in pregnant patients. Ginekologia Polska 2022: 93(8).

Sadowski EA, et al. Adnexal lesions: imaging strategies for ultrasound and MR imaging. Diagnostic and Interventional Imaging 2019: 100(10).

Sayasneh A, et al. The characteristic ultrasound features of specific types of ovarian pathology. International Journal of Oncology 2015: 46(2).

Timmerman D, et al. Simple ultrasound-based rules for the diagnosis of ovarian cancer. Ultrasound in Obstetrics and Gynecology 2008: 31(6).

Vara J, et al. O-RADS classification for ultrasound assessment of adnexal masses. Diagnostics 2023: 13(4).

THANK YOU FOR YOUR ATTENTION

QUESTIONS?