Elevated Frequencies of SARS-CoV-2 Specific T Cells in Patients with Post Acute COVID19

Division of Allergy and Clinical Immunology, Department of Medicine, University of Colorado, Aurora, CO

Katherine M, Littlefield, Renée Watson, Eiko Yamada, Henry Chu Charles P. Neff, Jennifer M. Schneider, and Brent E. Palmer

Abstract

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection rates have decreased globally since the start of 2021, in part due to novel vaccines, but as many as 50% - 80% of individuals with resolved infection report persistent symptoms lasting weeks to months. SARS-CoV-2 infection is typically controlled by the immune system in 2-3 weeks and detection of replication-competent virus via nasal pharyngeal swab is rare after this period. Symptoms lasting longer than 4 weeks post-symptom onset, or hospital discharge, qualify as post-acute COVID-19 (PAC), which is thought to have multifactorial etiology driven primarily by immune dysregulation and inflammatory cytokine production. Because it has been shown that individuals infected with SARS-CoV-2 mount a strong inflammatory T cell response against the virus, we examined SARS-CoV-2-specific T cells in 15 subjects with PAC and 15 controls (AC) that had didn't have any symptoms after clearing the virus to determine if virus-specific T cells play a role in driving persistent inflammation and PAC. Peripheral blood mononuclear cells were collected, isolated by gradient centrifugation, and stimulated with Spike (S), Nucleocapsid (N), Membrane (M) and Envelope (E) SARS-CoV-2 peptide pools to determine the frequency, cytokine producing capacity and maturation / exhaustion marker state of SARS-CoV-2 specific-T cells using flow cytometry. Individuals with PAC had decreased frequencies of total naïve T cells, and increased frequencies of total effector memory cells CD8+ T cells and increased frequencies of total central memory CD4+ T cells compared to AC subjects. The combined response to all peptide pools demonstrated that subjects with PAC had significantly elevated frequencies SARS-CoV-2 specific CD8+ T cells producing TNFα and IFNγ compared to controls (P=0.026 and P=0.0003). While CD4+ T cell frequencies to the combined peptide only trend higher in the PAC subject, frequencies of TNFa producing CD4+ T cells directed against N and S peptide pools were significantly elevated compared to controls (P=0.007 and P=0.004). Within the PAC group, 60% of individuals had a CD8⁺ T cell response to 3 or more peptides while the same response was only seen in 22% of AC subjects. These results suggest that SARS-CoV-2-specific T cells persist in patients with PAC and could in part contribute to the development and maintenance of post-acute COVID syndrome.

Background

- SARS-CoV-2 was first seen in 2019 and as of 4/9/2021 has infected 133,146,550 people worldwide causing 2,888,530 deaths¹.
- While the majority of people recover for SARS-CoV-2, 50%² 80%³ with resolved infection have residual symptoms termed long covid or PAC which is defined by a broad class of symptoms ranging from chronic headaches, anosmia, dyspnea and fatigue to sequelae across multiple organ systems that persist 4 weeks or longer post infection.
- PAC more commonly occurs in females, those with increased age or BMI, or in individuals reporting 5+ symptoms within a week of onset of primary infection⁴.
- Previous studies demonstrate 100% of individuals infected with SARS-CoV-2 had T cell responses to structural peptides, including the nucleocapsid peptide⁵.
- A study of long-term immune responses found SARS-CoV-2 specific T cells have a half life of 3-5 months in those that clear the virus normally⁶.
- Proposed mechanisms behind PAC include autonomic dysfunction, organ system damage during acute infection, and prolonged inflammation.

Hypothesis

Inflammatory cytokines produced by SARS-CoV-2 specific T cells contribute to the development and maintenance of PAC.

Patient Recruitment and Methods

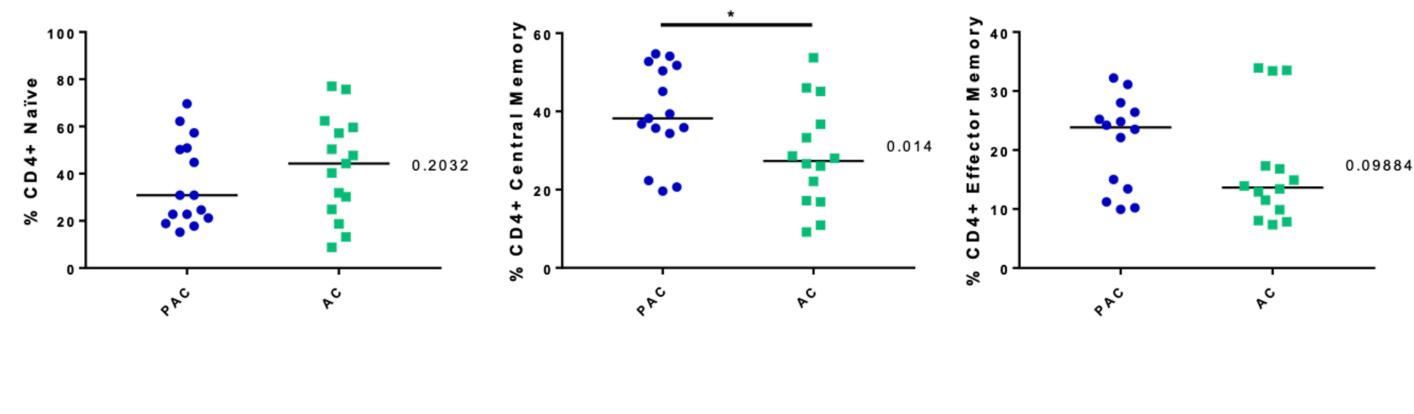

- Participants were recruited from the University of Colorado Hospital and around the Aurora/Denver area under the approved COMIRB protocol # 20-1219. All participants were PCR positive. COVID-19 symptoms were self reported and individuals with two or more symptoms that persisted for at least four weeks after onset or hospitalization – depending on severity – were classified as post-acute COVID (PAC) and individuals reporting symptoms for less than four weeks were classified as acute COVID (AC). Clinical characteristics are summarized in Table 1.
- Blood was collected and PBMC (Peripheral Blood Mononuclear Cells) were isolated by gravity centrifugation.
- PBMC was stimulated with peptide pools of the spike (S), nucleocapsid (N), membrane (M) and envelope (E) proteins of the USA-WA1/2020 strain of SARS-CoV-2. T cell activation, memory markers and cytokine production were enumerated by flow cytometry.
- Statistical significance was determined using Mann-Whitney T tests.

Table 1: Clinical characteristics.

	PAC	AC
Number of participants	15	15
Participants with preexisting conditions*	10 - 75%	4 - 27%
Age (year)	53 (22-64)	34 (24-71)
Female	53%	40%
Male	47%	60%
Number of symptoms	9 (2-17)	6 (0-15)
Symptom duration (days)**	225 (72-317)	14 (0-42)
Time from symptom onset to Visit 1 (days)	196 (41-571)	29 (10-241)

Time from symptom onset to visit 1 (days) 196 (41-571) 29 (10-241) Information provided by patients and obtained from the EMR including medical history, demographics and COVID symptoms and testing. *Participants who reported one or more of the following: hypertension, cancer, cardiac, pulmonary, kidney, immune system, metabolic or hepatic disease. **Duration was calculated from onset for mild cases and from hospital discharge for severe cases.

Results

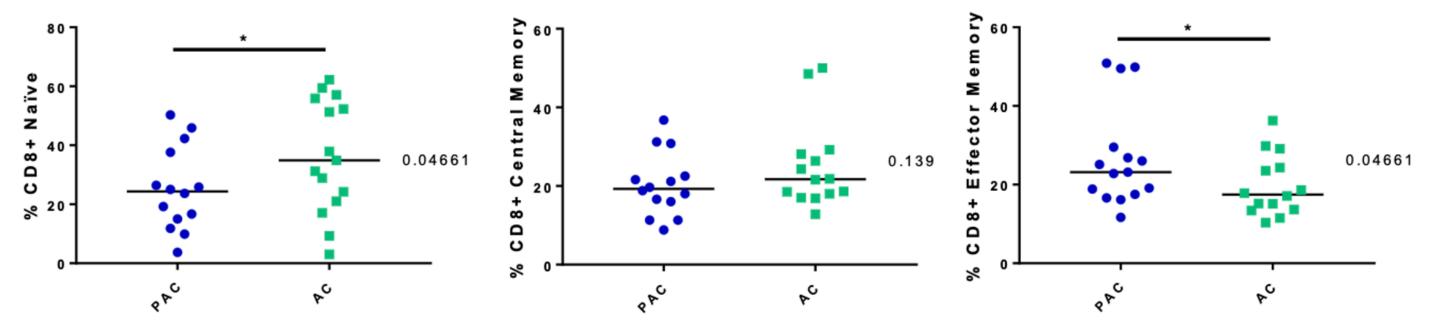


Fig 2. PAC subjects had decreased naïve and increased effector memory T cells compared with controls. PBMC were stained with monoclonal antibodies to determine the expression of CD45RA and CD27 to classify the maturation state. Naïve are defined as CD27+CD45RA+, central memory are CD27+CD45RA-, and effector memory CD27-CD45RA-. Terminally differentiated effector memory cells were also compared and not found to be significantly different between PAC and AC groups.

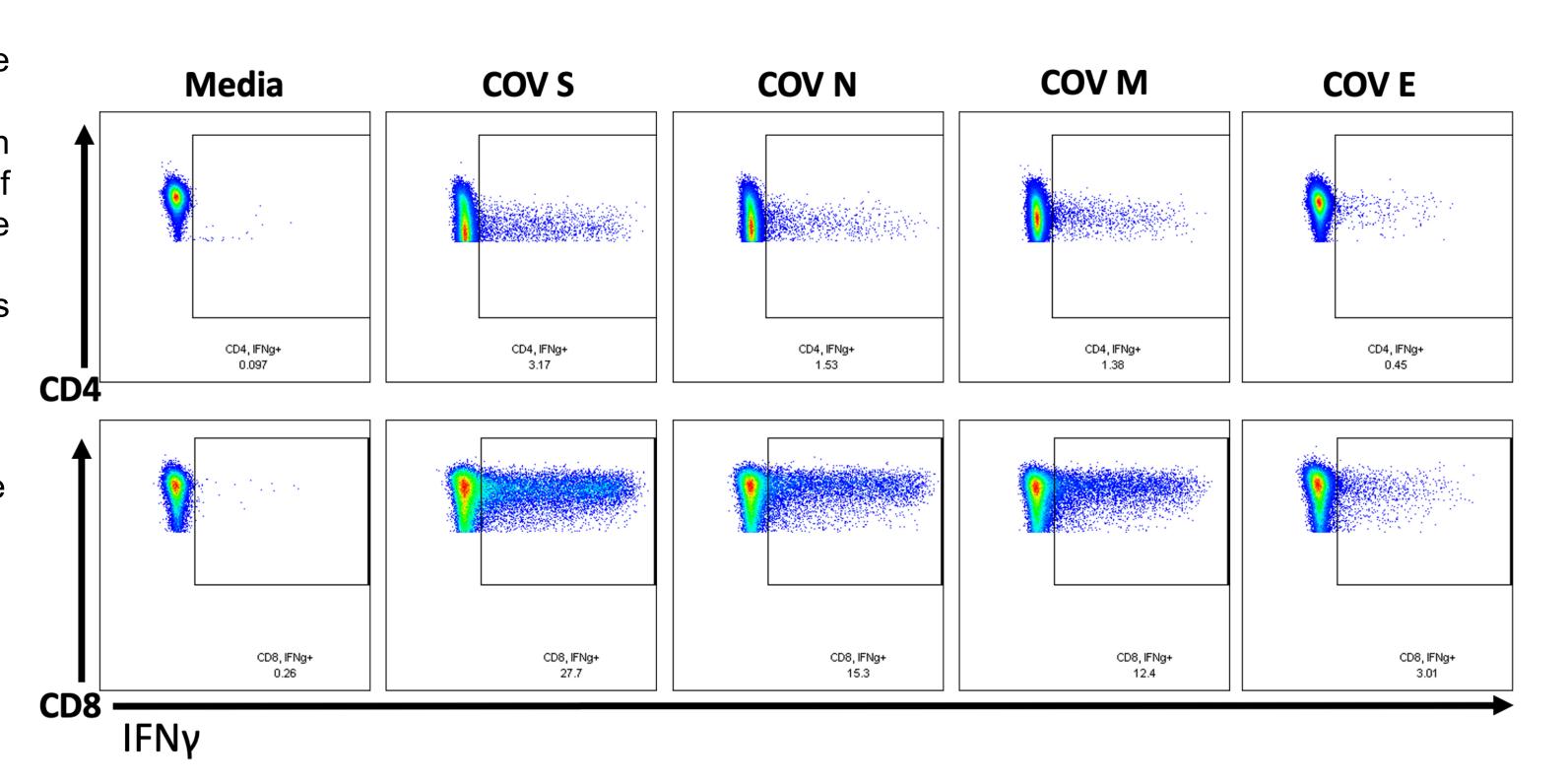


Fig 3. Representative flow cytometry dot plots of SARS-CoV-2-specific T cell responses. PBMC from subjects with PAC were stimulated with SARS-CoV-2 S, N, M and E 15mer peptide pools for 6 hours in the presence of GolgiPlug after 2 hours. The cells were stained with monoclonal antibodies against surface markers (CD3, CD4, CD8, PD-1, CD27 CD45RA), then they were fixed, permeabilized and intracellularly stained with IFNγ, TNFα, IL-2 and Ki67. The stained samples were acquired on a BD LSR II and analyzed using FlowJo. Cytokine positive populations were determined by expression in an unstimulated control.

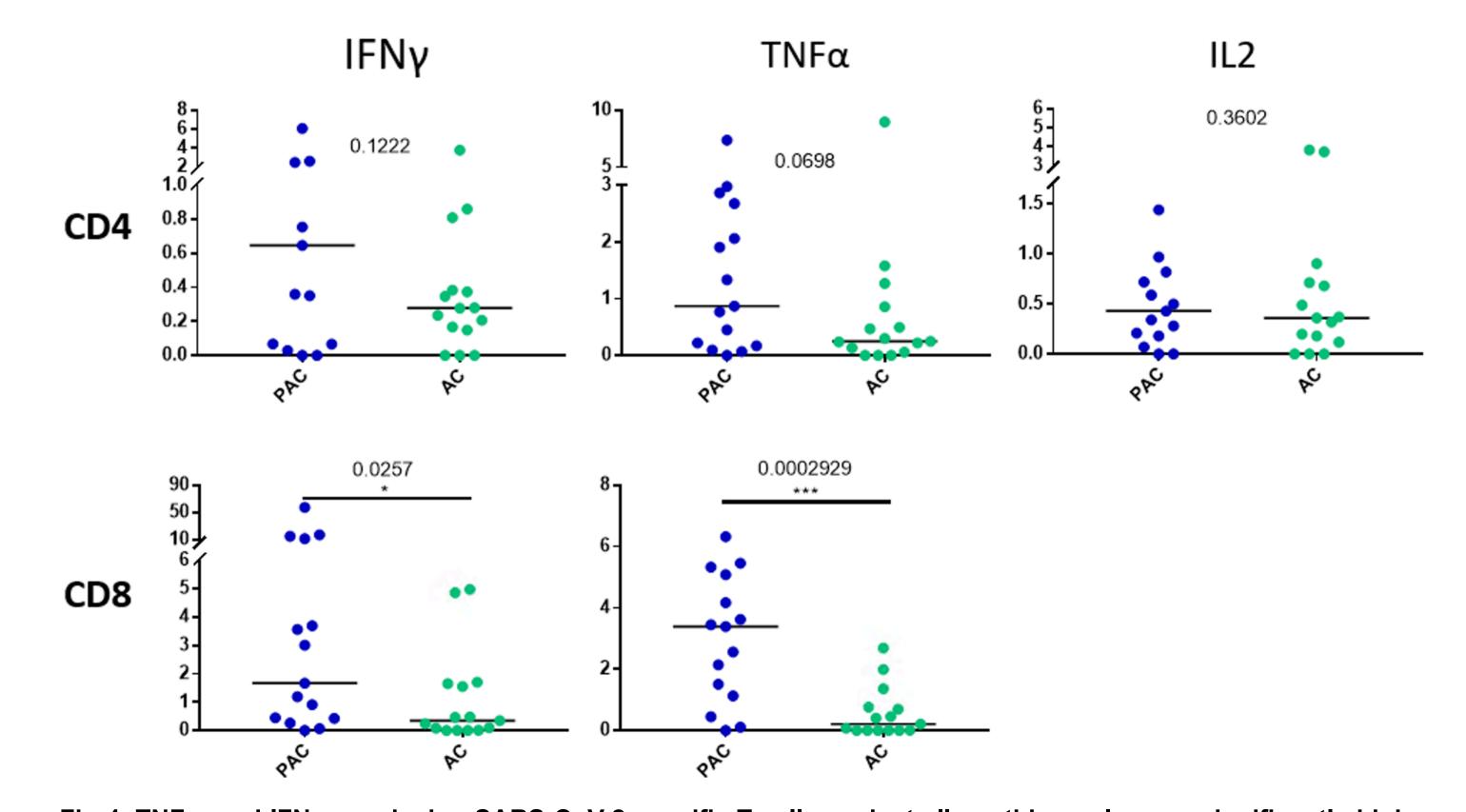


Fig 4. TNF-α and IFN-γ producing SARS-CoV-2 specific T cells against all peptide pools were significantly higher in PAC than controls. Each dot represents one patient's sum of percent IFNγ, IL-2 or TNFα on CD4+ and CD8+ T cells from PAC (Blue) or AC (teal) over background. Combined IFNγ or TNFα virus-specific CD8+ T cells against all peptide pools were significantly higher in PAC individuals compared to acute controls (AC). A similar trend was also seen in the virus-specific CD4+ T cell compartment. There was no significant difference in IL-2 producing virus-specific T cells between PAC and AC.

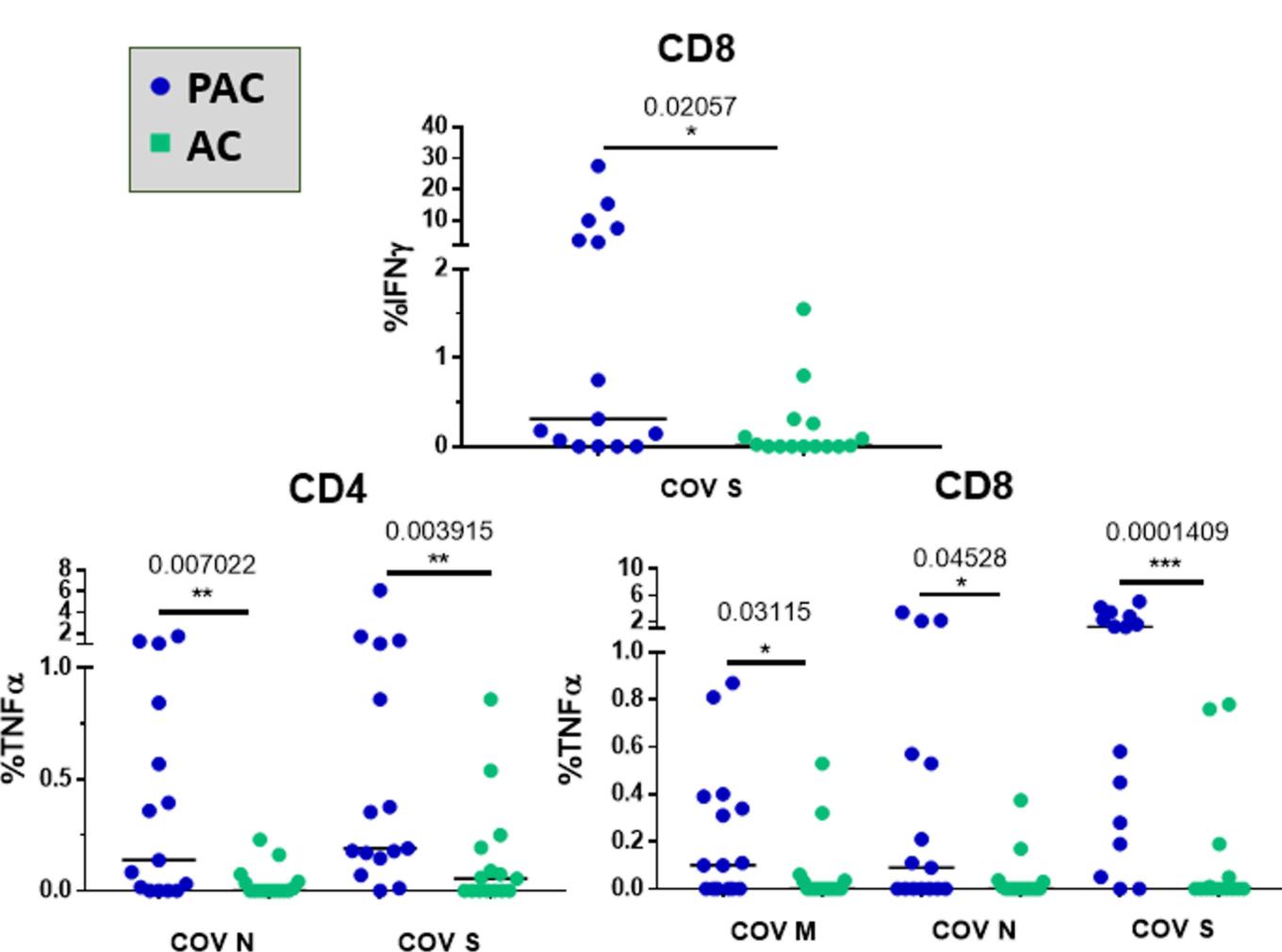


Fig 5. PAC subjects had elevated frequencies of TNF- α and IFN- γ producing T cell directed against SARS-CoV-2 S, N and M peptide pools compared with controls. While some of the strongest differences between those with PAC and AC are seen in response to the S peptide, in PAC specific T cells respond to the N and M peptide pools as well.

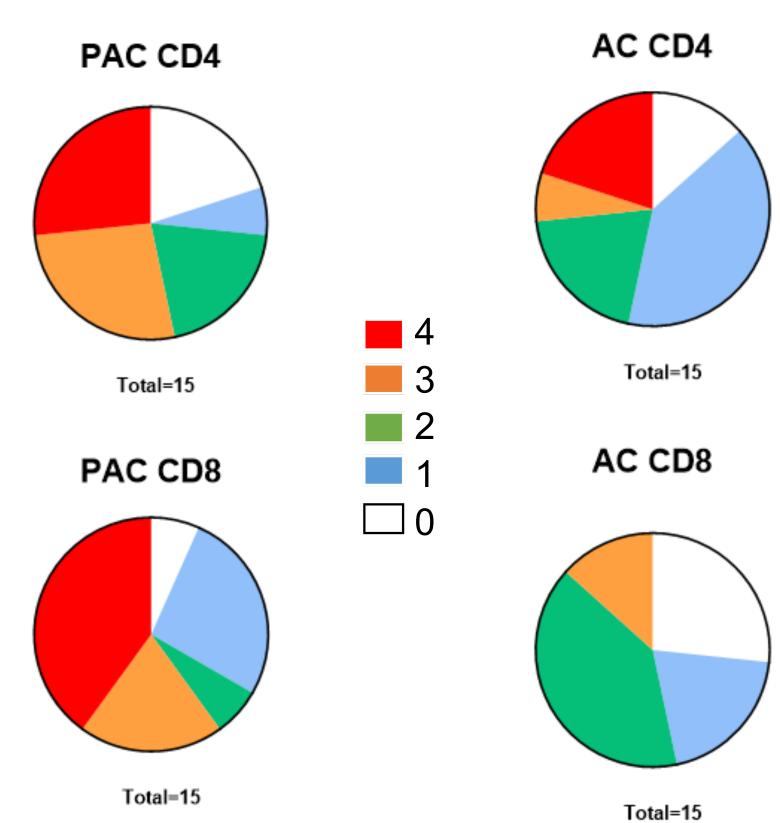


Fig 6. PAC specific T cells respond to more SARS-CoV-2 epitopes than AC patients. In these pie charts we compare the number of peptide pools each subject responds to by defining cytokine production of 0.1% or more over background as having a specific T cell response. In CD4 and CD8 specific T cells 53% and 60% respectively of those with PAC responded to three or more SARS-CoV-2 peptides and only 27% and 20% responded in those with AC.

Conclusions

- Total naïve T cells were decreased, while effector memory T cell were increased in PAC compared to AC subjects.
- Combined responses to all SARS-CoV-2 peptide pool were elevated in PAC compared to control subjects indicating the maintained T cell responses to the virus longer than those that cleared the virus normally.
- PAC subjects responded to a greater number of SARS-CoV-2 peptide pools that controls indicating that they maintain a broader virus-specific response than controls.

Future Directions

- Determine if elevated SARS-CoV-2 specific T cells in PAC subject are responding to persistent virus in distal organs (i.e. gut) and do they contribute to the development and maintenance of
- Examine inflammatory cytokine production by innate immune cell populations in the blood.
- Measure plasma CRP and D-Dimer to determine if systemic inflammation and SARS-CoV-2 specific T cells correlate.

References

1. WHO COVID-19 Explorer. Geneva: World Health Organization, 2020. Available online: https://worldhealthorg.shinyapps.io/covid/ (last

cited: [09Apr2021]). 2. Tenforde, M. W., et al., IVY Network Investigators (2020). Symptom Duration and Risk Factors for Delayed Return to Usual Health Among Outpatients with COVID-19 in a Multistate Health Care Systems Network - United States, March-June 2020. MMWR. Morbidity

and mortality weekly report, 69(30), 993–998. https://doi.org/10.15585/mmwr.mm6930e1 3. Carfì, A., Bernabei, R., Landi, F., & Gemelli Against COVID-19 Post-Acute Care Study Group (2020). Persistent Symptoms in Patients

After Acute COVID-19. JAMA, 324(6), 603-605. https://doi.org/10.1001/jama.2020.12603 4. Sudre, C. H., et. al. (2021). Attributes and predictors of long COVID. Nature medicine, 10.1038/s41591-021-01292-y. Advance online publication. https://doi.org/10.1038/s41591-021-01292-y

5. Le Bert, N., Tan, A.T., Kunasegaran, K. et al. SARS-CoV-2-specific T cell immunity in cases of COVID-19 and SARS, and uninfected controls. Nature 584, 457–462 (2020). https://doi.org/10.1038/s41586-020-2550-z 6. Dan, J. M., et al. (2021). Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection. Science (New York, N.Y.), 371(6529), eabf4063. https://doi.org/10.1126/science.abf4063