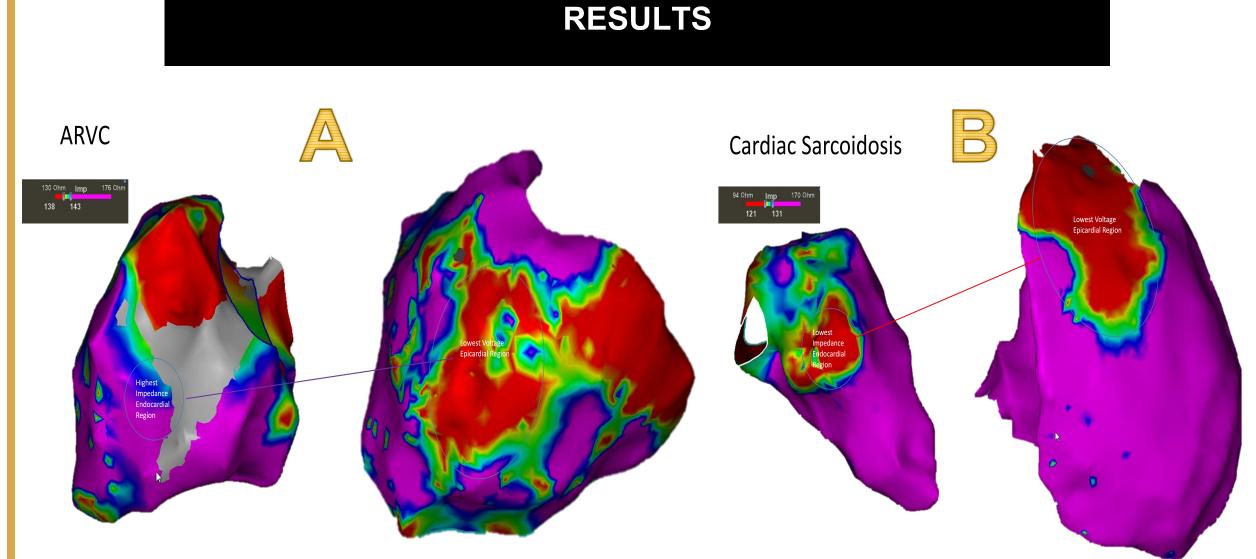


# Cardiac Sarcoidosis and Arrhythmogenic Right Ventricular Cardiomyopathy Can Be Differentiated Using Voltage Mapping Data During Electrophysiological Study

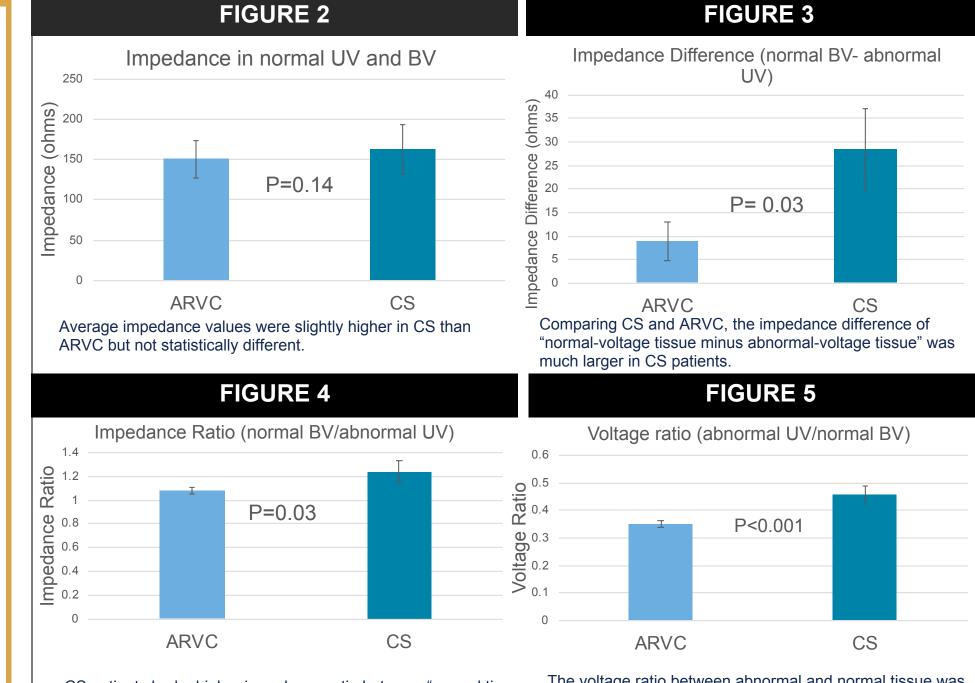


Joseph Adewumi, MD¹; Scott Freeman, MD¹; Erica Zado, PA-C⁴; Matthew M. Zipse, MD²; Lohit Garg, MD²; Ryan G. Aleong, MD²; Michael A. Rosenberg, MD²; Alexis Z. Tumolo, MD²; Cory M. Tschabrunn, PhD⁴, Francis E. Marchlinski, MD⁴; William H. Sauer, MD³, Wendy S. Tzou, MD²


1.University of Colorado Division of Cardiology, 2.University of Colorado, Division of Cardiology, Cardiac Electrophysiology Section, 3. Brigham and Women's Hospital 4. University of Pennsylvania

# **BACKGROUND**

- Cardiac sarcoidosis (CS) can mimic arrhythmogenic right ventricular cardiomyopathy (ARVC)
- Both diseases can affect the right ventricular myocardium and cause arrhythmias
- CS has been described as having patchy distribution compared to ARVC which may be more homogenous
- Discrimination between these two conditions is important due to their different management strategies
- ➤ Electroanatomic mapping (EAM) can identify differences in the impedance and voltage makeup of myocardial tissue during EP study


# **METHODS**

- ➤ Patients diagnosed with ARVC (n=100) [using the 2010 Task Force Criteria], and CS (n=26) [using the 2014 HRS diagnostic criteria] who underwent right ventricular EAM were selected for retrospective analysis.
- ➤ Abnormal unipolar voltage (UV) defined as <5.5 mV; abnormal bipolar voltage (BV) defined as <1.5 mV
- Categorical variables were compared with Student's t-test method.



**Figure 1**. Electroanatomic mapping of the right ventricle in an ARVC (A) and CS (B) patients show differences in the impedance /voltage regions.

| Average Impedance values                                   | No.<br>Patients | Mean                 | P-value |
|------------------------------------------------------------|-----------------|----------------------|---------|
| ARVC                                                       | 48              | 151 (144.6-157.8)    | 0.14    |
| CS                                                         | 14              | 162.57 (146.6-178.5) |         |
| Impedance difference (nl BV- abnl<br>UV)                   |                 |                      |         |
| ARVC                                                       | 45              | 8.87 (4.76-12.98)    | 0.03    |
| CS                                                         | 14              | 28.5 (19.8-37.21)    |         |
| Impedance ratio (normal<br>BV/abnormal unipolar voltage)   |                 |                      |         |
| ARVC                                                       | 45              | 1.083 (1.05-1.11)    | 0.03    |
| CS                                                         | 14              | 1.24 (1.15-1.32      |         |
| Voltage ratio (abnormal UV / normal BV)                    |                 |                      |         |
| ARVC                                                       | 100             | 0.35 (0.337-0.363)   | <0.001  |
| CS                                                         | 26              | 0.46 (0.433-0.486)   |         |
| Average Voltage (abnormal UV and abnoraml BV)              |                 |                      |         |
| ARVC                                                       | 100             | 1.64 (1.57 -1.71)    | <0.0001 |
| CS                                                         | 25              | 2.43 (2.19-2.66)     |         |
| Table 1. ARVC vs CS impedance, voltage, and voltage ratios |                 |                      |         |



### CONCLUSION

- ➤ This study found that EAM can use the differences in myocardial involvement to distinguish CS and ARVC during EP study
- ➤ When the "abnormal-unipolar to normal-bipolar-voltage" ratios are compared, CS and ARVC can be differentiated
- ➤ Isolated endocardial impedance values obtained in normal or abnormal unipolar/bipolar voltage areas did not differ significantly between ARVC and CS patients
- ➤ The impedance ratios support the idea that ARVC ventricular myocardium may have a more homogenous distribution compared to CS

# **IMPLICATIONS**

- > This study advances knowledge of the expected EAIVM difference between ARVC and CS
- ➤ Using the results of this project, clinicians can further stratify abnormal electroanatomic mapping results for patients with concern for cardiac sarcoidosis vs ARVC.
- > Further study will look to validate these results in a prospective cohort of patients.

### Disclosures

> Joseph Adewumi: No Disclosures.





