





What is anesthesia? Current view
Involves diverse neurobiological effects

• Unconsciousness
• Immobility
• Amnesia

Anesthetic-induced immobility

Anesthetic-induced amnesia









Pharmacological criteria for identification of relevant targets
• Low anesthetic potency (mM) results in low specificity; necessitates criteria to distinguish relevant targets □ Acute and **reversible** alteration of target function - reversibility □ Clinically relevant concentrations pharmacological sensitivity □ Target is expressed in *appropriate* anatomical locations to mediate the specific behavioral effect - plausibility

9

The **synapse**: principal neuronal site of anesthetic action Synaptic transmission is more sensitive to anesthetics than is axonal conduction - Sherrington & Sowton (BMJ 1905) - Larrabee & Posternak (1952)

Opposing actions on inhibitory and excitatory synaptic transmission Volatile anesthetics: Depress excitatory Postsynaptic potentials synaptic transmission glutamatergic 5 mV Facilitate inhibitory Halotha 100 msec synaptic transmission (and tonic inhibition)

GABAergic What are the mechanisms for these opposite effects? Weill Cornell Medicine

Putative molecular targets for neurobiological effects

- GABA<sub>△</sub> receptors\* (inhibitory)
- NMDA and AMPA glutamate receptors\* (excitatory)
- · Neuronal nicotinic acetylcholine receptors
- Two-pore domain  $(K_{2P})$  and ATP-sensitive  $(K_{ATP})$   $K^+$ channels
- Voltage-gated cation channels (Na<sup>+</sup>, Ca<sup>2+</sup>, K<sup>+</sup>, HCN)

Ligand-gated and voltage-gated ion channels are the most important targets

Weill Cornell Medicine

10







Agent specificity for molecular targets: Different primary targets between major anesthetic classes Potent inhaled (volatile) Ligand-gated ion channels: GABA<sub>A</sub>, glycine, NMDA, AMPA, neuronal nicotinic acetylcholine promiscuous with multiple • Ion channels: K<sub>2P</sub>, HCN, Na<sup>+</sup>, Ca<sup>2+</sup>, K<sup>+</sup> targets Gaseous inhaled anesthetics: Block NMDA and activate K<sub>2P</sub> channels less promiscuous (N<sub>2</sub>O, Xe, Inactive at GABA<sub>A</sub> receptors cyclopropane) • Propofol and etomidate potentiate GABA<sub>A</sub> receptors Intravenous anesthetics: Ketamine blocks NMDA receptors and HCN1 channels relatively selective Weill Cornell Medicine

15 16

Synaptic GABA<sub>A</sub> receptors: potentiation of phasic and tonic inhibition

• Strongest evidence for any molecular target

• GABA is the major inhibitory neurotransmitter

• GABA<sub>A</sub> receptors are allosterically modulated by both volatile and intravenous anesthetics

• Potentiate fast inhibitory phasic transmission, prolongs the IPSC

• Tonic activation of highly sensitive extrasynaptic channels

© Weill Cornell Medicine

17 Hemmings et al., 2013

Pharmacology of GABA<sub>A</sub> receptor potentiation by propofol

Site-directed mutagenesis used to create insensitive receptors

Single point mutation in β<sub>3</sub> subunit (N265M) markedly reduces propofol sensitivity

Suggests a specific binding site

17





## Contrasting effects of anesthetics on excitatory vs. inhibitory transmission

- Facilitate inhibitory synaptic transmission
  - Postsynaptic and extrasynaptic actions at GABA receptors (major for IV agents)
- **Depress** excitatory synaptic transmission (prominent for volatile anesthetics)...
  - Presynaptic: inhibition of neurotransmitter release
  - Postsynaptic: inhibition of NMDA and AMPA glutamate receptors

Weill Cornell Medicine

21



22











Volatile anesthetic effects on voltagegated sodium channels Multiple target hypothesis of volatile anesthetics Jeoflurane · Enhance inhibitory · Depress excitatory neurotransmission Block Na<sub>v</sub> at clinical concentrations · Isolated nerve terminal preparations Recombinant Na<sub>v</sub> in mammalian cell lines · What about in vivo? Weill Co

27 28





29 30



• Selective and potent Na<sup>+</sup> channel activator
• Used by Native Americans for poison arrows
• Predicted to *increase* MAC

Well Cornell Medicine

32

31



33 34



Mammalian Na<sup>+</sup> channel subtypes

Na<sub>v</sub>1.6

Na<sub>v</sub>1.6

Na<sub>v</sub>1.1

Na<sub>v</sub>1.7

Na<sub>v</sub>1.7

PNS

Na<sub>v</sub>1.4

Muscle

Na<sub>v</sub>1.5

Heart

PNS

Weill Cornell Medicine

35



37 38



Isoflurane inhibits the bacterial channel NaChBac at clinical concentrations

Bacterial ion channels are more amenable to structural studies

Potency (IC<sub>50</sub>) comparable to mammalian Na<sub>v</sub>

Potential model for structure-function studies

B. -80 m Nolding, IC<sub>20</sub> -0.35 mM

-100 m Nolding, IC<sub>20</sub> -0.35 mM

39 40

Binding site for sevoflurane in NavMs by x-ray crystallography

Studies underway with NMR and x-ray crystallography of NavMs

Crystal structure showing bound sevoflurane (black circle) in the S5 helix region between the voltage sensor and pore domains

With Bonnie Wallace and Dave Hollingworth, Birkbeck College, UCL



41 42



**Summary points** 

General anesthesia is a composite of pharmacological effects involving distinct sites and molecular targets

General anesthetics interact with ion channels to enhance inhibition/depress excitation

Synaptic actions reduce connectivity to alter integration of higher-level network functions to produce unconsciousness



44

## **Summary points**

43

Isoflurane has neurotransmitter selective presynaptic effects on SV exocytosis

Voltage-gated Na+ channels are plausible presynaptic targets for volatile anesthetics

Structural models are beginning to reveal binding sites on Na+ channels



Weill Cornell Medicine

45

Acknowledgements

Yuko Koyanagi Vanessa Osman

Kerry Purtell Rheanna Sand Iris Spiegel Cheng Zhou Zhenvu Zhou Irem Atasov

Olaf Andersen WCM Tim Ryan WCM Ted Eger UCSF Bonnie Wallace UL

Weill Cornell Medicine

Funding: NIH GM58055

46

hchemmi@med.cornell.edu @HughHemmings Bjanaesthesia.org bja@med.cornell.edu @BJAJournals PHARMACOLOGY ₹ PHYSIOLOGY ₹ ANESTHESIA Towards a Comprehensive Understanding of Anesthetic Mechanisms of Action: A Decade Trends in Pharmacological Sciences, July 2019, Vol. 40, No. 7 https://c Weill Cornell Medicine

47

