

Anesthesia for Patients in the Cardiac Catheterization Laboratory

Conference Rooms E & F February 27, 2024

No Disclosures

Topics

- ▶ Lab Environment
 - ► Contrast Agents
 - Echocardiography ► RF Technologies
- Catheterization Procedures
 - ► Angiography/Angioplasty/Stents
 - Valvuloplasty
 - ► Mitral Clip
 - ► TAVR
- ► Electrophysiology Procedures
 - Anesthetic Impacts on Electrophysiology
 - ► Pacemaker Management
 - ► Pacer/ICD Implantation ► Generator Change
 - ► Lead Removal
 - ► Cardioversion
 - VT Ablation
 - ▶ SVT Ablation
 - Afib Ablation

Cath Lab Environment - Contrast Agents

- Types of adverse reactions
 - Hypersensitivity
 - ➤ Acute (mild <3%, moderate-severe <0.04%)
 - ► Delayed, >1hr, typically rash (intra-arterial 10-14%)
 - ► Thyroid dysfunction (all rare)
 - Thyrotoxicosis (Graves and multinodular goiter)
 - ► Contrast Induced

Cath Lab Environment - Contrast Agents

- Risk factors for CIN
 - ► Age >65yo

 - ► Kidney Disease (eGFR<60) (15-55%)

 - ▶ Diabetes (6-29%)
 - Nephrotoxic drug use (e.g. aminoglycosides, NSAIDs, amphotericin, cisplatin)
 - ► Intra-arterial worse than IV
- ► CIN Risk Reduction
 - ► High vs Low Osmolality Contrast (5-12% vs 1-3%)
 - ► Gadolinium vs iodinated contrast between 1/8 and 1/4 risk
 - ► For high risk patients: NS or at 1mL/kg/hr for 6-12hrs before contrast and 12-24hrs after

Cath Lab Environment -**Echocardiography**

- ► Transthoracic Echocardiography (TTE)
- Transesophageal Echocardiography (TEE)
- ► Intracardiac Echocardiography (ICE)
 - ► Limited Far-field imaging
 - ► Limited 3D capabilities
 - ► No bi-plane imaging
 - ▶ Good for intra-atrial septum defect closure
 - ► Emerging data for LAA occlusion, TAVR

Catheterization Procedures

- ► Angiography/Angioplasty/Stents
- ► Percutaneous Closure of ASD
- Valvuloplasty
- ▶ Mitral Clip
- ► TAVR
- ▶ Thromboembolectomy

Catheterization Procedures

- ► Angiography/Angioplasty/Stents
 - ▶ Typically performed with light sedation and local anesthesia
 - Anesthesiology called due to multiple comorbidities, heart failure, respiratory distress, acute MI
- Patient's NPO status may lead to ETT being preferred over LMA if continuation of light sedation is not possible
- When called due to iatrogenic pericardial effusion without infectious concern, consider pericardiocentesis by cardiology with the blood returned directly to a patient IV
- ▶ Collaboration is key when called non-emergently

Catheterization Procedures

- ► Percutaneous Closure of ASD
 - ▶ TEE is used
 - ► GETA
 - ► Possible Complications
 - Arrhythmias
 - ► AV Conduction defect
 - ▶ Device Embolization
 - ► RV dysfunction and pulmonary hypertension may worsen

Catheterization Procedures

- ▶ Valvuloplasty (Success Rate ~85%)
 - General or MAC depending on the patient conditions
 - ▶ If TEE, then general
 - ▶ High institutional variation
 - ▶ Transient acute decrease in cardiac output
 - ► Complications for Mitral Valve
 - Regurg (8%)
 - ► ASD (2%)
 - ▶ Stroke (<1%)
 - ▶ Valve rupture (<1%)
 - ► Tamponade (<1%)
 - ► Conduction Issues (<1%)

Catheterization Procedures

- ► Mitral Clip
 - ▶ A-line per patient condition and ACT practices
 - ► TEE
 - ► GETA
 - ▶ Complications (<3.5% major adverse events)
 - ► Mortality (<0.1%)
 - ▶ Persistent ASD (50% at 6mo 25% at 12mo)
 - ▶ Mitral Stenosis (15%, range 1-35%)
 - ► Myocardial Infarction (0-3%)
 - ➤ Damage to chordae or leaflet (0-2%)
 - ▶ Stroke (0-1%)
 - ► Clip embolization (0.1-0.7%)
 - ▶ Pericardial Effusion (0-0.5%)

Catheterization Procedures

- - ▶ Blood Available
 - ▶ Large Bore PIV
 - Arterial line (varies on whether accessed by cardiology vs anesthesiology)
 - ▶ Echocardiography
 - ► General and MAC both used
 - ▶ Complications
 - ► Mortality (1.5%)
 - ► Myocardial Infarction (0.5%)
 - ► Perivalvular leak (1.75%)

 - ▶ AV Node Dysfunction (14% from 2008-2018)
 - Myocardial stunning from rapid pacing
 - Pericardial Effusion

Electrophysiology Procedures

- Anesthetic Impacts on Electrophysiology
- Pacemaker Management
- ▶ Pacer/ICD Implantation
- ▶ Generator Change
- Lead Removal
- Cardioversion
- VT Ablation
- SVT Ablation
- Afib Ablation

Electrophysiology Procedures

- Anesthetic Impacts on Electrophysiology
 - ► Propofol
 - ▶ minimal effects on QT interval and conduction system.
 - ▶ represses catecholaminergic activity,
 - inhibits ion channels of myocardium.
 - Volatile anesthetics
 - ▶ Some prolongation effects on QT interval
 - ▶ Use with propofol will reverse its effect on QT interval
 - ▶ Reduction of ischemic and reperfusion arrhythmias
 - Dexmedetomidine

Electrophysiology Procedures -Pacemaker Management

- ► Yes/No Defibrillator
- ▶ Will there be electromagnetic Interference
 - ▶ Will Interference be of significant duration
 - ▶ Will the pathway be within 15cm of the device or leads
- ▶ Is the patient pacemaker dependent?
- ▶ Who manufactures the pacemaker?
- Will a magnet do what you want and is it feasible for the procedure?
- ▶ Assess available data: EKG, CXR, Interogation Report, Cardiology Notes
 - ► Pacemaker App (pacemakerid.com)

Electrophysiology Procedures -Pacemaker Management

- ▶ If you are disabling defibrillation, then consider applying cutaneous defib pads
- Magnet Application
 - If defibrillator, then disables defib function only (magnet does not impact pacing functions)
 - ▶ If this is a Boston Scientific PRIZM Device, Tachy Therapy may also be impacted Boston Scientific and Medtronic give audio feedback with magnet placemen
 - ▶ If no defibrillator and is NOT Biotronik, then asynchronous pacing should begin
 - If no defibrillator and is Biotronik, then asynchronous pacing may not be maintained ▶ Default Rates for pacemakers without defibrillators (note: this may be changed)
 - ► Medtronic 85 bpm
 - ▶ St. Jude 100 bpm
- Consider the patient's native rate prior to initiating asynchronous pacing

Electrophysiology Procedures -Pacemaker Management

- ▶ When to interrogate post-operatively
 - Pre-op programming changes
 - External defibrillation was used
 - ▶ Possible device damage or dysfunction ▶ If otherwise clinically indicated
- ▶ Consider if magnet was applied intraoperatively Manufacturer Contacts
- ► Medtronic (800) 878-5616
 - ► Guidant/Boston Scientific (800) 227-3422
 - ▶ St. Jude (800) 722-3423
- ▶ Biotronik (800) 547-0394
- ▶ Sorin (877) 663-7674

Electrophysiology Procedures -Pacemaker Management

- ► Leadless Pacemakers
 - ► Medtronic Micra
 - ▶ Does not respond to magnet
 - ► Modes:
 - VVI, VVIR, VOO, OVO, OFF
 - ► Medtronic Micra AV
 - ▶ Does not respond to magnet
 - ► Modes:
 - VVI, VVIR, VOO, OVO, OFF
 - Abbott Aveir
 - ▶ Does (by default) respond to Magnet
 - ▶ Initially 100 bpm and then rate depends on battery charge between 100bpm and 85 bpm
 - ► Modes:

- ▶ Pacer/ICD Implantation
 - placed percutaneously under mild to moderate sedation
 - ▶ For ICD testing by delivering shocks, deep sedation or general anesthesia
 - ► For ICDs, Defib pads
 - ▶ Defib after inducing Vfib
 - > Possible pacing due to bradycardia after defib
 - Complications
 - Cardiac perf
 - ► Myocardial Injury
 - ▶ Stroke

Electrophysiology Procedures

- ▶ Generator Change
 - placed percutaneously under mild to moderate sedation
 - ▶ For ICD testing by delivering shocks, deep sedation or general anesthesia
 - For ICDs, Defib pads
 - ► Defih after inducing Vfih
 - ▶ Possible pacing due to bradycardia after defib

Electrophysiology Procedures

- Lead Extraction (note: removal refers to a procedure for a lead <1yr old)
 - MAC for Low Risk, GETA for Intermediate and High Risk
 - High Institutional Variation with Intermediate and High Risk
 - A-Line, Vascular Access, TEE, Blood Availability
 - ▶ Low Risk (EROS Scale)
 - ▶ Pacer Leads <15yrs old, ICD Leads <10yrs old
 - High Risk
 - ► Pacer Leads >15yrs old, ICD Leads >10yrs old
 - ▶ Dual Coil ICD Leads
- Intermediate Risk Otherwise meet low risk criteria but with the following patient conditions
 - Congenital heart disease
 - Initial Implant when patient was <15yo</p> ➤ Cr >2mg/dL

 ➤ WBC > 12, Positive Blood Culture, Vegetations on Echo
- NYHA Class IV
- Reasons for extraction
- ▶ Lead recall/malfunction
- ► MRI/radiotherapy

Electrophysiology Procedures

- Cardioversion
 - ▶ Without TEE

 - Airway equipment available
 - ▶ Very brief (less than a minute): Deep sedation vs General without airway
 - ▶ With TEE
 - Same as above, except to procedure lasts longer
 - ▶ Consider topicalization to reduce the sedation requirement

Electrophysiology Procedures

- Ablation Procedures
 - ▶ Potential Complications (Intra-op Consideration)
 - ▶ Cardiac Perforation +/- Tamponade,
 - ▶ Valve Damage,
 - ► Heart Block,

 - ▶ Esophageal Thermal Injury (Esophageal Temp Sensor)
 - ► Fluid Overload during RFA procedures (Consider Lasix)
 - ▶ Defibrillation pads in place

Electrophysiology Procedures

- VT Ablation
 - ▶ Often, light sedation for the mapping portion of procedure then deepen
 - ▶ Epicardial ablation typically general anesthesia
 - ▶ Endocardial typically MAC for stable, general for less stable patients
 - ▶ Often with arterial line
 - Support of hemodynamics during electrical stimulation (PES/NIPS/CIED)
- ▶ End organ disfunction in unstable VT patients (lactate, potassium, etc.)
- SVT Ablation
 - ▶ Typically, under moderate sedation

Electrophysiology Procedures

- Afib Ablation
 - ▶ GETA
 - ► High frequency jet ventilation (HFJV) can reduce chest wall movement and left atrial volume changes
 - ► A-line only if patient condition warrants
 - > 2nd PIV, heparinization indicated
 - No paralysis redosed after induction to monitor phrenic nerve
 - ▶ Esophageal temperature probe
 - ▶ Minimize fluids (Lasix may be needed)

Afib Ablation Early Complications

Pericardial effusion (1.2-1.3%)

- Tamponade (0.9%)
 Immediate perc.
 Drainage
- Consider anticoagulation reversal

- Risk increases with left atrial size
- Observe for signs after emergence

Phrenic nerve palsy (right)(<0.5%)

- During right pulmonary vein and/or SVC isolation
- Higher risk with cryo than RF ablation

Afib Ablation Delayed Complications

Pulmonary vein stenosis

Historically high incidence, up to 40% Incidence is now near zero Present weeks to months after procedure cough, chest pain, dyspnea, hemoptysis, recurrent pulmonary infections, new pHTN

Atrial esophageal fistula (0.1%)

Present 2-4 weeks post-procedure
During left atrial posterior wall ablation

Questions?

