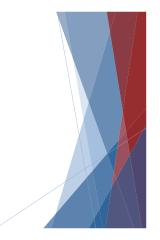
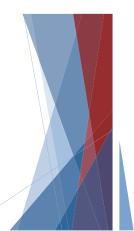


Panel Objectives

- Discuss the importance of having a mass casualty plan at every hospital
- 2. Describe and apply triage tools to be used during mass casualty events
- 3. Apply alternative anesthetic techniques (i.e., TIVA) during mass casualty events or disasters
- 4. Discuss management of common trauma injuries encountered in during mass casualty events, including blast and crush injuries


MASS CASUALTY INCIDENT PROTOCOLS

L. Jane Stewart MD, JD, MPH Senior Instructor , Anesthesiology Denver Health and Hospital Authority Director of Education for Diversity, Equity and Inclusion Department of Anesthesiology, University of Colorado


DISCLOSURES

No financial disclosures

LEARNING OBJECTIVES

- · Recognize the types possible mass casualty incidents (MCIs)
- · List the three types of events most likely to occur at your institution
- Sketch a strategy for anesthesiology mass casualty response at your institution

MASS CASUALTY INCIDENT (MCI) TYPES

Human-Made

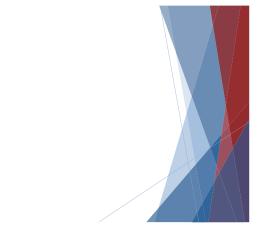
MASS CASUALTY INCIDENT (MCI) TYPES

- Natural Disasters

 Earthquakes

 Weather (Floods, Hurricanes, Tornados)
 Infectious Disease Pandemics

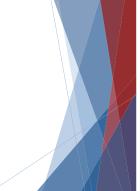
- Human-Made Disasters


 Mass shootings

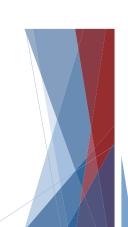
 Bombings

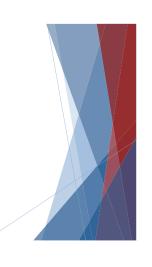
 Vehicular accidents (car, rail, airplane)

 Fires
- Radiation exposure
- Biochemical weapons
- Nuclear weapons


DEVELOPING MCI PROTOCOLS

DEVELOPING MCI PROTOCOLS


- Partners in MCE
 First Responders
 Emergency Department
 Department of Surgery
 Nursing and Surgical Techs
 Pre-Op/PACU
 OR Nursing
 ICU Nursing
 Department of Radiology
 Blood Bank/Lab
 Sterile Processing


DEVELOPING MCI PROTOCOLS

- Anesthesiology MCI Protocol
 Triage/Control Manager (no clinical responsibilities if possible)
- System for Calling In Backup
- Continuous communication between Trauma Surgery, Anesthesiology, and OR

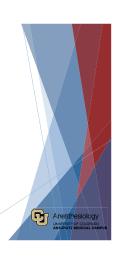
ASA MASS CASUALTY CHECKLIST

REFERENCES

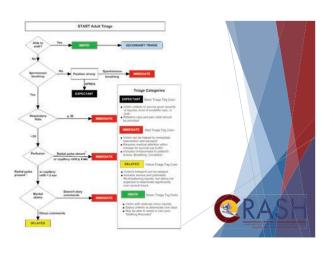
- Kuza C, McIssac JH. Emergency Preparedness and Mass Casualty Considerations for Anesthesiologists. Advances in Anesthesia (2018) 36: 39-66.
 O'Neill SB, Gibney B, O'Keeffe ME, Barrett S, Louis L. Mass Casualty Imagine Polity, Planning, and Radiology Response to Mass Casualty Incidents. Canadian Association of Radiologist's Journal (2020) 71(3): 388-395.
- 3. Perate AR. Pediatric Mass Casualty Preparedness. Anesthesiology Clin (2020)38:509-
- Bazyar J, Farrokhi M, Khankeh H. Triage Systems in Mass Casualty Incidents and Disasters: A Review Study with A Worldwide Approach. J Med Sci (2019) 7(3): 482-494.

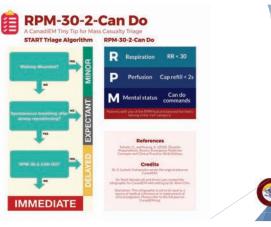
Triage Tools and Alternative Techniques

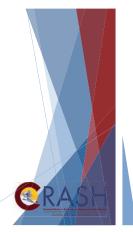
Professor and Interim Chair University of Maryland School of Medicine / R Adams Cowley Shock Trauma Center Baltimore, MD, USA,

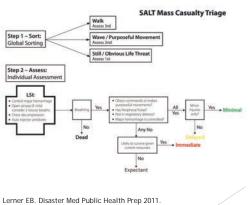

Objectives

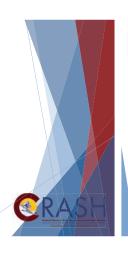
- Describe and apply triage tools for use at mass casualty events
- List and perform alternative anesthetic techniques (i.e., field TIVA) for use in resource-limited disaster settings


Triage Tools




Stages

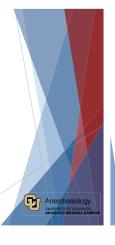

- ▶ Primary
 - **▶**Scene
- ► Secondary
 - **►**EMS
- ► Tertiary
 - ▶ED, trauma center, hospital triage area



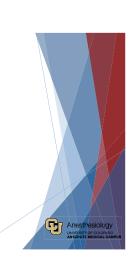
START vs. SALT

- **►**SALT
 - ▶Quick application
 - ▶Improved clinician confidence
 - ► Acceptable undertriage

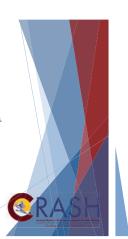
Lerner EB. Prehosp Emerg Care 2010. Cone DC. Prehosp Emerg Care 2009.



Anesthetic Techniques



Field TIVA Low Flow Anesthesia Regional


TIVA

TIVA vs. Volatiles?

"At present, available experimental data do not support the selection of one anesthetic agent over the others"

Schifilliti D. CNS Drugs 2010.

TIVA and TBI

- ► 252 combat casualties with TBI requiring neurosurgery
- ► TIVA vs. volatiles
 - ►TIVA: propofol + opioid +/- ketamine
 - ►Volatiles: sevo or iso
- ► No difference in outcomes / neurological recovery

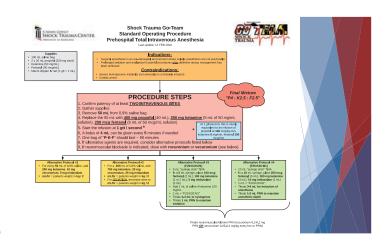
Grathwohl KW. Anesthesiology 2008.

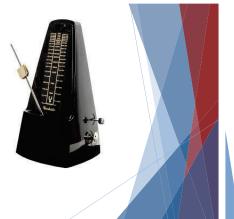
FIELD TIVA

- ► Supplies
 - ▶ 100 mL saline bag
 - ▶ 2 x 20 mL propofol
 - ► Ketamine (50 mg/mL)
 - ► Fentanyl (50 mcg/mL)
 - ► Macro dripper
 - ► (20 gtt = 1 mL)

FIELD TIVA

- ▶ Remove 50 mL from saline bag
- ▶ Replace with:
 - ▶Propofol 400 mg (40 mL)
 - ►Ketamine 250 mg (5 mL of 50 mg/mL soln.)
 - ► Fentanyl 250 mcg (5 mL of 50 mcg/mL soln.)

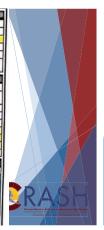

Final mixture "P4-K2.5-F2.5"

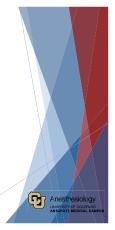

Field TIVA Titration

- ▶ 4 mL bolus every 5 minutes
 - ►Similar to propofol 100 mcg/kg/min, ketamine 5 mg/min, fentanyl 150 mcg/30 min
- ▶1 gtt/sec
 - ▶Titrate down once incision made
 - ▶Stop 10 minutes before completion of surgery
- ▶ 1 bag of PKF should last ~ 90 minutes

TIVA (BOUZAT Protocol)

- ► Ketamine 2-3 mg/kg/hr
- ► Sufentanil 0.2-0.3 mcg/kg/hr
- ► Cisatracurium 0.2 mg/kg/hr
 - ►Atracurium 0.5 mg/kg/hr

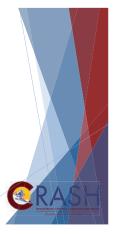



Galvagno SM. BMJ Emerg Med 2021.

For Every 50 ml NS Add		1st Bag		2nd Bag		3rd Bag			
200 mg Ketamine		50 ml NS		50 ml NS		50 ml NS			
0 mg	VECuronium +i-	40 ml Propolal		40 ml Propofol		40 ml Propofol			
mg	Midszolam	250 mcg Fentanyi		250 mag Fertanyl					
General kg/2 = miltr		250 mg Ketamine							
7	Alternate Mix		30-60		infusion Each B				
	250ml NS Bag	Start infusion	n wide open un	til induce	d then titrate to	approximately figitise			
50 mg	Ketamine	PROPOFOL INFUSION RATES							
gm 01	VECurpnum +/-	60 attird Set or Dial-A-Flow							
25 mg	Midspolam	Dose Rate 80 kg Pat				mglmin			
General kg/2 = mi/hr Sedation kg/4 = mi/hr		mcg/kg/min	gtt/min or mi	ithr	Weight (kg) x	Weight (kg) x			
		200	96		1.2	2.0			
ANESTHESIA STICK Sml Syringe SEDATION		175	84	2 8	1.05	1.75			
		150	. 72		0.9	1.5			
100 mc	Fernanyi (2 mi)	125	60	7	0.75	1.25			
100 mg	Ketamine (1 or 2 ml)	100	48		0.6	1.0			
5 mg	Midazolam (1 ml)	75	36		0.45	0.75			
Add 1 mi NS if Ketamine 100 mg/ml		50	24		0.3	0.5			
1 ml = F20:K20:M1 2-3 ml Titrate to Nystagmus 1 ml PRN to Maintain Sectation		INTRANASAL MEDICATIONS							
		Medicatio	n Do	se	Peak	Duration			
10ml Syringe GENERAL		Fentanyl	0.5 - 2 m	cg/kg	5 mms	30 mins			
250 mcg Fernand (5 mt)		Hydramorpho	zu 4-10 mg		10-15 mm	60 mins			
300 mg		Sufertani	0.05 mcg	pleg	20 mins				
10 mg	Midazolam (2 ml)	Ketamine	50 mg		5 mins	< 180 mms			
1 mi = F25:K30-M1		Midazolam	5-10 mg		5-10 mins	45 mins			
3-4 ml Induction		Flumazenii		40.04 mg/kg \\ 5-10 t		HIHITE			
3-4 ml Induction 1-2 ml PRN to Maintain Depth		Nalozone	2 mg	11111	1-5 mini	and the same			

Low Flow Anesthesia

- ► Conservation of liquid anesthetic
- ▶ Less vapor discharge into the air
- ► Higher inspired gas humidity (less heat loss / drying of airways)
- ► Earlier detection of leaks in the circuit
- ► Cheap VO₂ monitor



Disadvantages

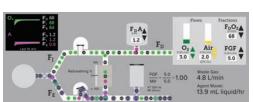
- ► Requires gas analyzer
- ▶ Water-induced failure of machine
- ▶ Rapid titrations difficult (?)
- ► Sevoflurane?
 - ▶Ok to use down to 0.5 L/min

Bedford RF. Anesth Analg 2000.

ASA. Statement on Use of Low Gas Flows with Sevoflurane (18 Oct 2023, www.asahq.org) Kennedy RR. Anaesth Intensive Care 2019.

Oxygen Consumption

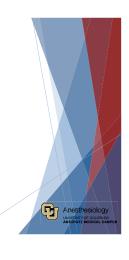
- VO₂ = 10 x wt (kg) o.75
- ► Children weighing less than 10 kg:
 - O_2 (ml/min) = 6.8 × weight (kg) +
 - ► More than 10 kg:
 - ► O₂ (ml/min) = 4.0 × weight (kg) + 35.8
- Rough guide:
- ► Adults: 3-4 mL/kg/min
- ► Children: 4-8 mL/kg/min
- Oxygen flowmeter setting
- $V_{FO_2} = VO_2 + (V_F VO_2) \times V_{O_2}$
- ► V_F = total fresh gar now
- ► V_{FO2} = oxygen fowmeter setting



No math required!

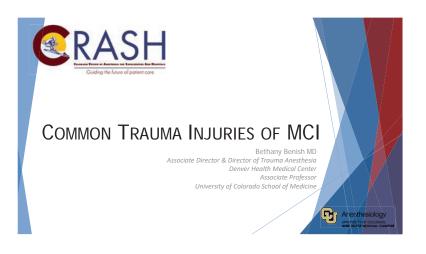
- ▶ Start the case normally
- ► When convenient, close circuit with oxygen set around 200 mL/min
- ▶ Watch FIO₂ and bellows / bag
 - ► <u>Full</u> bellows/bag = <u>wasted</u> anesthetic
 - Adjust mixture of gases according to desired FIO₂
 - Oxygen monitoring is triple redundant
 - ▶ Inspired oxygen analyzer
 - End tidal oxygen analyzer
 - Pulse oximeter

ASPF Course



Free! https://education.asahq.org

Regional



- ► Triage tools: SALT / START
 - ► Use one of them!
 - ▶ Practice
- ► Anesthetic techniques
 - ►TIVA
 - ►Low flow anesthesia
 - ► Regional

We all need to practice & train for MCI

✓ Training and collaboration are essential

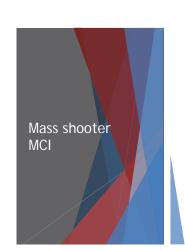
⚠ Disaster training drills

Have an MCI plan, Easier to dial back (size/impact of incident is unclear)

Blanning is essential...but be adaptive!

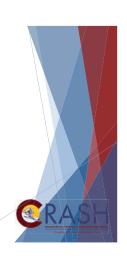
Triage, but don't hesitate to go to the OR

What to expect during an MCI...


Approximately 10% will need to go to OR within 30minutes

Pediatric Patients account for 10-20% of all casualties

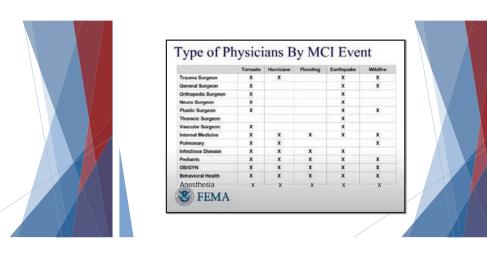
Many emergent (red tag) patients will arrive in private vehicles


Essential to <u>Triage and Re-Triage</u> non-urgent (green) patients—assign staff to each

- ► Active shooters:
 - ▶ 98% act alone
 - ▶ 93% plan it out
 - ▶ 90% commit suicide
- Expect <u>more</u> patients needing OR immediately(>10%)
- ► Higher incidence of potential lethal injuries (torso & head) RED TAGS
- ▶ Huge public health crisis in the U.S.!!!

Natural Disaster MCI

	Tornado	Hurricane	Flooding	Earthquake	Wildfire
Blunt Trauma	×	×	×	x	
Penetrating Trauma	×	x	x	x	
Burns				x	×
Crush	×			x	
Exacerbation of Chronic Conditions		×		x	
Gastrointestinal Illness		×		×	
Respiratory Impact		×	×	x	×
Submersion Injury		x	×		
Infected/Contaminated Wounds	×	x	×		



Natural Disaster planning:

How to Plan for Surgical Needs of Casualties

- Life saving (hemorrhage control, craniotomy): 10% of Red Tag casualties
- Open fractures: 10% of all casualties
- Penetrating eye injuries: 5% of all casualties
- Neurosurgery (Urgent): 10% of all casualties
- Chest surgery: 5% of all casualties
- Oral/Maxillary/facial: 5-10% of all casualties
- Burns: 0-5% of all casualties

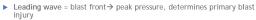
Resources for Natural disaster planning:

CDC: Mass Casualty Predictor Model

· HHS:

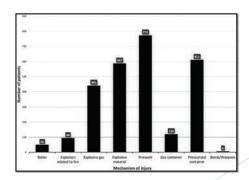
Medical Surge Capacity and Capability: A Management
 System for Integrating Medical and Health Resources During
 Large Scale Emergencies

- Medical Surge Capacity and Capability: The Healthcare Coalition in Emergency response and Recovery
- Mass Casualty And Mass Effect Incidents: Implications for Health care Organizations

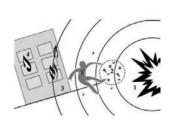


https://aspr.hhs.gov/HealthCareReadiness/guidance/MSCC/Pages/default.aspx

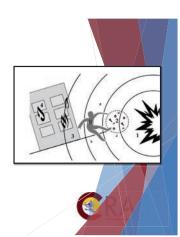
http://www.phe.gov/Preparedness/planning/mscc/Documents/mscctier2jan2010.pdf



- ▶ Blast pressure depends on distance from explosion
 - decreased by the r³ of distance
 - ▶ 10ft away receives 8x blast wave as 20ft away
- ▶ Negative pressure wave follows (backfilling the vacuum from blast)
 - ▶ "mushroom cloud"


Civilian "Blast" Trauma:

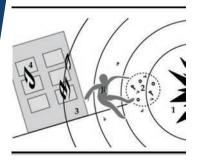
4 types of blast injuries


- ▶ Primary: Blast overpressure
- ➤ Secondary: Flying debris
- Tertiary: Displacement (victim propelled)
- Quaternary: Misc. (Burn, smoke inhalation, chemical/radiation)

Primary Blast Injuries

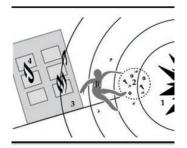
- ▶ Primary injuries: primarily affect air-filled organs/cavities

 - ▶ Lung
 - Abdomen
- Radiological diagnosis of primary blast injury focuses on pulmonary and enteric barotrauma
 - pulmonary opacification secondary to diffuse pulmonary alveolar hemorrhage and pneumothorax.
 - enteric injury manifested as intraperitoneal free air on CT
- This blast wave is magnified by the reflection in closed-space explosions

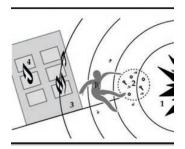

Blast Overpressure (BOP)

- ▶ 3 PSI → knock adult human over
- ► 15 PSI → TM rupture
- ▶ 35 PSI → significant lung injury
- ▶ 80 PSI → 50% severe lung injury
- ► 130 PSI → 50% mortality
- ➤ >200 PSI → 100% mortality

Secondary Blast Injury


- - bomb fragments, objects added to the device to increase lethality primarily penetrating trauma, but may also cause blunt trauma
- Large, irregular pieces, path in body unpredictable
- "Small holes hide big problems"
- Vascular injuries require early intervention
- Highest mortality: brain, heart, major vessels

Tertiary Blast Injury


- Victim being thrown by the force of the blast wind
- ▶ Mostly blunt trauma
- Fractures: skull, ribs (flail chest), long bones
- Assess for pneumothorax, hemothorax, pulmonary contusion & acute thoracic aortic injury
- Also includes crush injuries:

 - rhabdomyolysis

Quaternary Blast Injury

- ▶ Burn
- ▶ Smoke inhalation/CO poisoning
- ► Chemical/radiation bombs
- ▶ Structural collapse/falling debris

Most clinically challenging aspects of the anesthetic management of blast injury, to include:

Blast-induced traumatic airway injury Blast-related

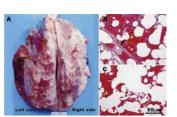
Blast-induced thermal injury.

Immediate autonomic response, followed by hemorrhage and parenchymal injury, which then culminates in an inflammatory phase

- ▶ Blast pressure disrupts alveolar-capillary interface → alveolar rupture/implosion
 - ▶ Blood enters alveoli → pulmonary alveolar hemorrhage
 - ▶ Air enters circulation →air emboli
 - ▶ Endothelial damage → platelet/fibrin activation →consumptive coagulopathy, DIC
 - ► Vagal mediated characteristic triad: apnea, bradycardia and hypotension
 - ► Other symptoms: tachypnea, dyspnea, cough, hemoptysis, hypoxia
 - ▶ 3x worse in closed spaces

Blast Lung

- ▶ "Butterfly" lung on CXR
- Acute arterial air embolism is responsible for most sudden deaths within 1st hour after blast
- Air embolism can affect heart, abdomen, brain, spinal cord



Lung Blast Injury

Lung blast injury

- Bullae
- Bronchi/alveoli filled with blood broken
- Alveolar septa

Management of blast lung:

Protective ventilation strategies ~ARDs, avoid high PEEP

Permissive hypercapnia (except TBI)

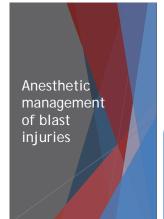
Consider High frequency ventilation

Consider ECMO

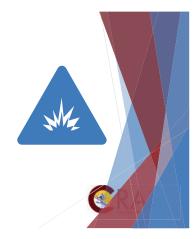
Other organs effected by primary blast:

- ► Ear: TM rupture #1 injury after blast overpressure incident
- ► Eye: common ~10% of blasts;
 - abrasions, intraocular hemorrhage, open globe
- ► Brain: less susceptible to 1º blast injury
 - ▶ Cerebral contusion, skull fracture, coup-counter-coup injury
 - ► Epidural, Subdural bleed, intracranial hemorrhage, edema, CVA related to air or fat emboli
- ► Cardiac:
 - ➤ Contusion, neurocardiac reflexes (brady/hypotension), coronary artery air emboli, arrythmia, Pulmonary HTN 2/2 PBLI
- ► GI:
 - ▶ gastric or intestinal perforation→ peritonitis, sepsis
- ► Other non-gas containing organs

Blast Airway concerns:


Laryngeal Injuries:

- Laryngeal injury
- ► Thermal airway injury
- Vocal cord hemorrhage
- Cartilage dislocation
- Laryngeal fracture


Tracheal/Bronchial injuries:

- ▶ Difficult intubation
- ► Laryngotracheal separation/injury (Listen for stridor)
- ► Pneumothorax & hemothorax
- ▶ Subcutaneous emphysema
- ► Difficult ventilation

- ▶ Damage control surgery
- ► ABC, RSI, avoid N2O
- ▶ Treat Pneumothorax
- ▶ ARDS ventilation strategies, limiting PEEP
- ► Air emboli risk for days after
- ► Expect missed injuries
- ► Lung isolation may be needed
- ► Fluids
 - ▶ Overload → ARDS worse, dilutional coagulopathy
 - Suboptimal → exacerbates tissue damage, AKI (esp crush injury,
 - ▶ Transfusion: Ratio & VHA driven, early FFP, platelets, lots of

- ▶ Blasts have unlimited wounding potential
- ▶ Blast injured at risk of under triage
- ► ABCs
- ► Triage and re-triage
- ► Damage Control Surgery
- ▶ Leave wounds open, repeat wound vac changes, washouts
- Expect to miss injuries
- ► Expect many required surgeries

Crush injury

- Compressive force \Rightarrow direct tissue damage, occlusion of venous outflow \Rightarrow myonecrosis
- ▶ "Smiling death" = Clinical deterioration including death can occur within 20
- "Crush syndrome"
- Delayed complications and death from renal failure

Traumatic asphyxia

- Severe crush injury to the chest (eg, heavy object, stampede)
 - · Cervicofacial cyanosis
 - · Facial edema

 - Subconjunctival hemorrhage
 Petechial eruptions on the face, neck, and torso above crush
- Typically seen after a short duration of crushing forces
- Seen in crowd crush events, such as stampedes at sports, music, and political
- May be combined with liver and spleen lacerations, rib fractures, pulmonary contusions, and anoxic brain injury

Crush injury mortality

80% victims die immediately due to direct effects of trauma/traumatic asphyxia

10% survive with minor trauma

10% are severely injured

"Crush Syndrome"

- "Crush syndrome" is the 2nd leading cause of mortality in earthquakes
- ▶ Extrication time is strongly associated with earthquakerelated mortality. Children and older individuals are highly vulnerable.
- Secondary prevention of "crush syndrome" may be possible with timely management at the scene of injury and carried on through field care, prehospital transport, and initial hospital care

"Crush Syndrome"

- Multisystem organ dysfunction, predominantly acute kidney injury, or death
- May present with rhabdomyolysis (hyperkalemia, hyperphosphatemia, and myoglobinuria)
- ightharpoonup Nephrotoxic effects of heme products & myoglobin ightarrow AKI
- Patients with rhabdomyolysis-induced renal failure have a mortality of ~20%
 - higher in patients with multiple injuries or multiorgan failure and when local resources are overwhelmed

Acute Renal Failure

- Crush injury can be associated with rapid and severe hyperkalemia, requiring renal replacement therapy
- ▶ MCI events with large numbers of crush injuries → excess demand on ICUs and dialysis resources
- When inadequate numbers of HD machines are available, peritoneal dialysis can be used, despite its slower clearance of potassium

Crush injury treatment:

Treat hypovolemia, including during extrication if prolonged

Trauma Panel Summary:

- ▶ Discussed types of mass casualty events and the importance of having an MCI
- Described triage tools & alternative anesthetic techniques to be used during mass casualty events or disasters
- ▶ Reviewed management of common trauma injuries encountered in during mass casualty events, including blast and crush injuries

Any Questions?

References

- McDonald Johnston A, Alderman JE. Thoracic Injury in Patients Injured by Explosions on the Battlefield and in Terrorist Incidents. Chest. 2020 Apr;157(4):888-897.
- Leissner KB, Ortega R, Beattie WS. Anesthesia implications of blast injury. J Cardiothorac Vasc Anesth. 2006 Dec;20(6):872-80
- Scott TE, Kirkman E, Haque M, Gibb IE, Mahoney P, Hardman JG. Primary blast lung injury a review. Br J Anaesth. 2017 Mar 1;118(3):311-316.
- Mistry S, Das A, Hardman JG, Bates DG, Scott TE. Pre-hospital continuous positive airway pressure after blast Lung injury and hypovolaemic shock: a modelling study. Br J Anaesth. 2022 Feb;128(2):e151-e157.
- Harrisson SE, Kirkman E, Mahoney P. Lessons learnt from explosive attacks. J R Army Med Corps 2007; 153: 278-82
- Korkmaz İ, Çelikkaya ME. Blast Lung Injury in Children: Injury Patterns and Associated Organ Injuries. Pediatr Emerg Care. 2023 Sep 1;39(9):715-720
- Mathews ZR, Koyfman A. Blast Injuries. J Emerg Med. 2015 Oct;49(4):573-87.
- Hazell GA, Pearce AP, Hepper AE, Bull AMJ. Injury scoring systems for blast injuries: a narrative review. Br J Anaesth. 2022 Feb;128(2):e127-e134.
- Josef Daniel Shakargy, Sami Gendler, Tomer Talmy, Guy Shushan, Irina Radomislensky, Avish Ofer Almog, Guy Avital, Avi Benov, Shaul Geliksu, Slast Injury Patterns Among Israel Defense Fatalities, Military Medicine, Volume 188, Issae 7-8, Juty/August 2023, Pages e1788-e1794

- Dilday J, Leon D, Kuza CM. A review of the utility of high-frequency oscillatory ventilation in burn and trauma ICU patients. Curr Opin Anaesthesiol. 2023 Apr 1;36(2):126-131
- Nunziato CA, Riley CJ, Johnson AE. How Common Are Civilian Blast Injuries in the National Trauma Databank, and What Are the Most Common Mechanisms and Characteristics of Associated Injuries? Clin Orthop Relat Res. 2021 Apr 1-147(4): 683-691
- Korkmaz İ, Çelikkaya ME, Atıcı A. Secondary blast injury: radiological characteristics of shrapnel injuries in children. Emerg Radiol. 2023 Jun;30(3):307-313
- Brewster CT, Forbes K, Handford C, Scallan N, Eskell M, Hettiaratchy S, Baden J. Planning for UK terror attacks: Analysis of blast and ballistic injuries. Injury. 2021 May;52(5):1221-1226
- Macintyre AG, Barbera JA, Smith ER. Surviving collapsed structure entrapment after earthquakes: a "time-to-rescue" analysis. Prehosp Disaster Med. 2006 Jan-Feb;21(1):4-17
- Malinoski DJ, Slater MS, Mullins RJ. Crush injury and rhabdomyolysis. Crit Care Clin. 2004 Jan;20(1):171-92.
- Stewart JJ, Faulk TI, Sosnov JA, Clemens MS, Elterman J, Ross JD, Howard JT, Fang R, Zonies DH, Chung KK. Rhabdomyolysis among critically ill combat casualties: Associations with acute kidney injury and mortality. J Trauma Acute Care Surg. 2016 Mar;90(3):492-8

