

# Introduction to the All of Us Research Program (AoURP)

- Introduction (Description, goals, mission and values)
- Limitations & Alternative datasets
- Participation
- Data Structure and Elements
- Researcher Prospective
- Examples





# Introduction to the All of Us Research Program (AoURP)

- Created and managed by National Institutes of Health
- DIVERSE database with 668,000+ participants!
- Rooted in Equity
- Designed to be Longitudinal
- Researcher Friendly
- Free-ish (\$300
   Computational Credits to start)





337,500+ Physical Measurements



312,900+ Genotyping Arrays



287,000+ Electronic Health Records



245,350+ Whole Genome Sequences



15,600+ Fitbit Records





1,000+ Long-Read Sequences NEW! In 2023





## Introduction to the All of Us Research Program (AoURP)

The All of Us Research Program: Data quality, utility, and diversity

Citation: Ramirez, A. H., Sulieman, L., Schlueter, D. J., Halvorson, A., Qian, J., Ratsimbazafy, F., ... & Wellis, D. (2022). The All of Us Research Program: data quality, utility, and diversity. Patterns, 3(8).



#### **Patterns**



#### The All of Us Research Program: Data quality. utility, and diversity

Andrea H. Ramirez, 1,3,23,\* Lina Sulieman, 3 David J. Schlueter, 4 Alese Halvorson, 3 Jun Qian, 3 Francis Ratsimbazafy, Roxana Loperena, 5 Kelsey Mayo, 5 Melissa Basford, 5 Nicole Deflaux, 8 Karthik N. Muthuraman, 5 Karthik Natarajan, 7 Abel Kho, Hua Xu, Consuelo Wilkins, Hoda Anton-Culver, Eric Boerwinkle, Mine Cicek, Cheryl R. Clark, Elizabeth Cohn, 14 Lucila Ohno-Machado, 15 Sheri D. Schully, 2 Brian K. Ahmedani, 16 Maria Argos, 17 Robert M. Cronin, 11 Christopher O'Donnell, 19 Mona Fouad, 20 David B. Goldstein, 21 Philip Greenland, 22 Scott J. Hebbring, 2

Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA

<sup>2</sup>All of Us Research Program, National Institutes of Health, Bethesda, MD, USA

\*Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA \*Center for Precision Health Research, Precision Health Informatics Section, National Human Genome Research Institute, National Institutes

Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, Nashville, TN, USA

"Verily Life Sciences, San Francisco, CA, USA

Department of Biomedical Informatics, Columbia University Medical Center, New York, NY, USA

\*Center for Health Information Partnerships, Northwestern University, Chicago, IL, USA

School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA 15 Department of Medicine, University of California Irvine, Irvine, CA, USA

(Affiliations continued on next page

THE BIGGER PICTURE The engagement of participants in the research process and broad availability of data to diverse researchers are essential elements in building precision medicine equitably available for all. The NIH has established the ambitious All of Us Research Program to build one of the most diverse health databases in history with tools to support research to improve human health. Here, we present the initial launch of the Researcher Workbench with data types including surveys, physical measurements, and electronic health record data with validation studies to support researcher use of this novel platform. Broad access for researchers to data like these is a critical step in returning value to participants seeking to support the advancement of precision medicine and improved health for all.



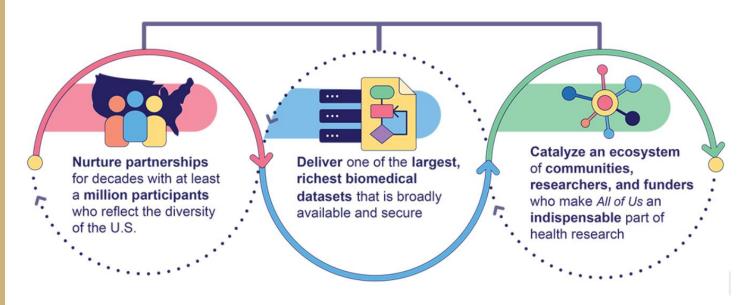
Production: Data science output is validated, understood, 112345 Production Sala and regularly used for multiple domains/platforms

The All of Us Research Program seeks to engage at least one million diverse participants to advance precision medicine and improve human health. We describe here the cloud-based Researcher Workbench that uses a data passport model to democratize access to analytical tools and participant information including survey, physical measurement, and electronic health record (EHR) data. We also present validation study findings for several common complex diseases to demonstrate use of this novel platform in 315,000 participants, 78% of whom are from groups historically underrepresented in biomedical research, including 49% self-reporting non-White races. Replication findings include medication usage pattern differences by race in depression and type 2 diabetes, validation of known cancer associations with smoking, and calculation of cardiovascular risk scores by reported race effects. The cloud-based Researcher Workbench represents an important advance in enabling secure access for a broad range of researchers to this large resource and



Patterns 3, 100570, August 12, 2022 This is an open access article under the CC BY-NC-ND license (http://




### Limitations

- Must use Python or R to conduct analyses
- Robust Sampling methods not used
- Electronic Health Records to have expected missingness
- Biosampling to be a challenge for those living in rural areas/far from recruitment sites.
- Participation Retention
- PHSR Exploration





### Mission & Values



#### **Core Values**

- Participation open to all
- Participants reflect the rich diversity of the US
- Participants have access to their own Info
- Broadly accessible data for research





## Data Structure & Elements

## Longitudinal Research Program



460,000+

Participants who have completed initial steps of the program



Data Elements:

**Surveys** 

**Physical Measurements** 

**Electronic Health Records** 

**Personal Health Technology** 

**Genomics** 

**Biospecimen Collections** 



## Who is all of us?

Inclusion/Exclusion
Criteria

Data Collection

**Demographics** 





# All of Us: Participants

#### **Inclusion Criteria**

- Current resident US Adults aged 18 and older w/ capacity to consent
- Insurance not a qualifier

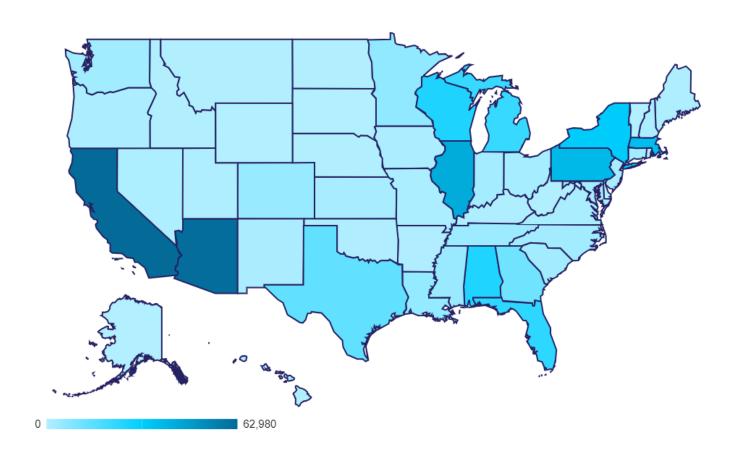
#### **Exclusion Criteria**

- Adults' w/o decisional capacity to consent
- Children (<18 years old)</li>
- Incarcerated Individuals

#### **Data Collection**

- Health Care Provide
- AoU Survey's
- Biospecimen

#### Recruitment

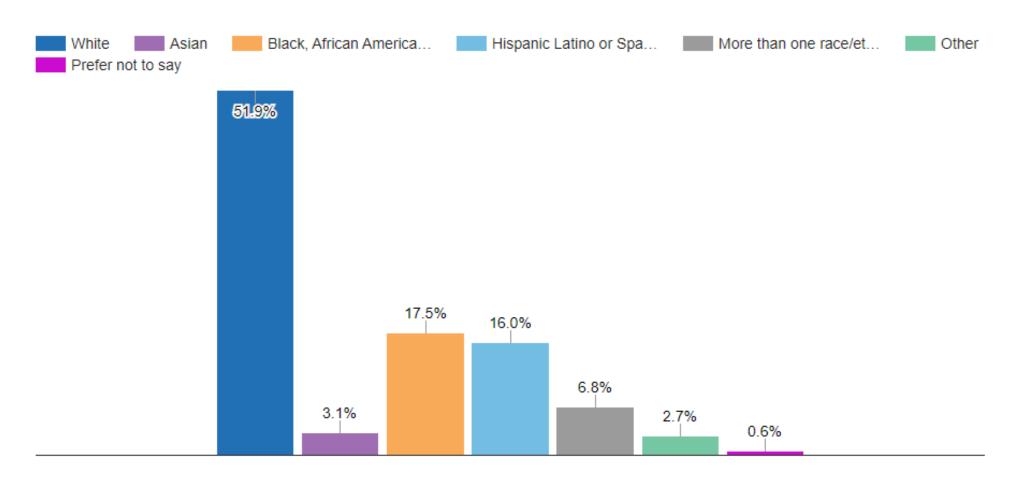

- Active enrollment/recruitment
- Healthcare Provider Organization outreach
- Community groups, seminars, & tabling
- Web-based advertising





## All of Us: Demographics

### **Geographic Distribution**

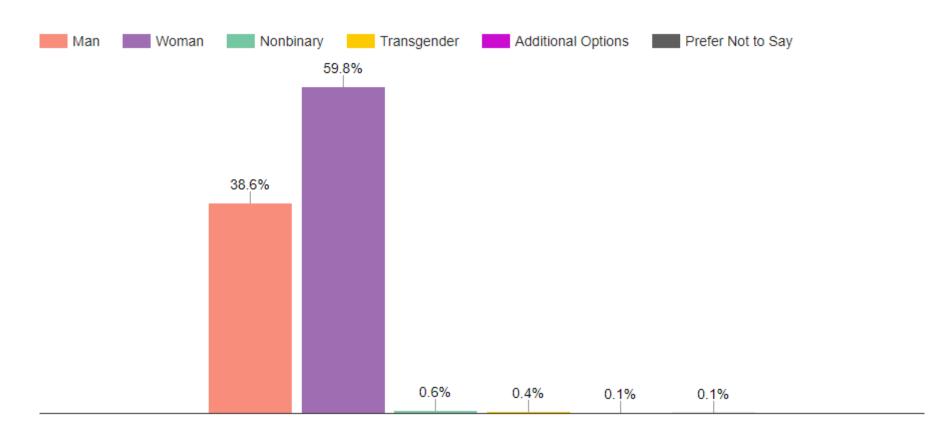







# All of Us: Demographics

## **Race & Ethnicity**

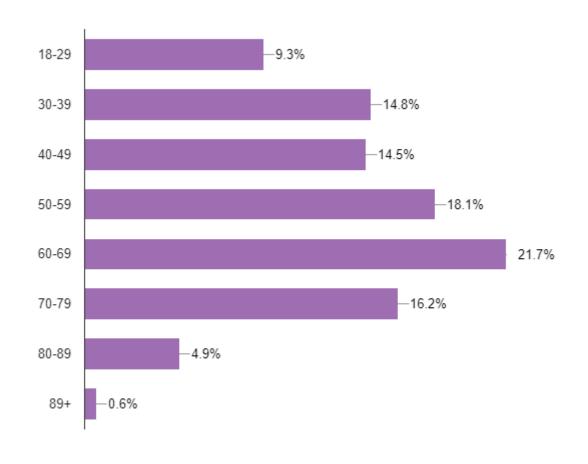







## All of Us: Demographics

## **Gender Identity**








## All of Us: Demographics

### Age







## All of Us: Demographics Participants included in All of Us research data are diverse.

| Underrepresented in Biomedical<br>Research (UBR) Categories | Curated Data<br>(% out of 413,450<br>participants) |  |  |  |
|-------------------------------------------------------------|----------------------------------------------------|--|--|--|
| At least one UBR                                            | 75%                                                |  |  |  |
| Non-white race or Hispanic/Latino ethnicity                 | 43%                                                |  |  |  |
| Age >= 65                                                   | 24%                                                |  |  |  |
| Less than GED                                               | 9%                                                 |  |  |  |
| Annual Income <=\$25k                                       | 25%                                                |  |  |  |
| Sexual and Gender Minorities                                | 10%                                                |  |  |  |
| Disability                                                  | 10%                                                |  |  |  |







## Data Elements - Surveys

- The Basics\* basic demographic questions, including questions about a participant's work and home.
- Lifestyle\* asks about a participant's use of tobacco, alcohol, and recreational drugs.
- Overall Health\* collects information about a participant's overall health including general health, daily activities, and women's health topics.

- Personal and Family Medical
   History explores past medical history,
   including medical conditions and approximate
   age of diagnosis.
- Social Determinants of Health asks about the social determinants of health, including a participant's neighborhood, social life, stress, and feelings about everyday life.
- Health Care Access and Utilization asks questions about a participant's access to
  and use of health care.
- COVID-19 Participant Experience asks about the impact of COVID-19 on a
  participant's mental health, well-being, and
  everyday life.

#### \*Baseline Survey



## Data Elements - Surv

- The Basics\* base
   questions, including
   participant's work an
- Lifestyle\* asks a of tobacco, alcohol, a
- Overall Health\* about a participant's
   general health, daily
   health topics.

\*Baseline Survey



## **Cancer Sites**

Bladder
Blood or soft
tissue
Bone
Brain
Breast
Cervical
Colon /Rectal
Endocrine
Endometrial
Esophageal
Eye

Head and neck
Kidney
Lung
Ovarian
Pancreatic
Prostate
Skin
Stomach
Thyroid
Other

 explores past medical history, nedical conditions and approximate inosis.

Personal and Family Medical

eterminants of Health - asks social determinants of health, participant's neighborhood, social and feelings about everyday life.

are Access and Utilization - ions about a participant's access to health care.

9 Participant Experience the impact of COVID-19 on a
s mental health, well-being, and
fe.

## Data Elements – Physical Measurements

#### **Baseline physical Measurements**

- physiologic (e.g., blood pressure, heart rate)
- anthropometric (e.g., height, weight, waist and hip circumference) measurements.

Longitudinal Component:
Possible if provider takes
measurements during each visit

#### **Measurements Collection**

- Clinical Setting
- Self-reporting from home
- Home visits when needed





## Data Elements-Electronic Health Records

#### **Current EHR datatypes collected**

- Demographics
- Visits
- Diagnoses
- Procedures
- Medications
- Laboratory Visits
- Vital Signs

Longitudinal Component: EHR records updated at least Biannually

#### **EHR Collection**

- Direct from Health Care Provider Organization (HPO)
- Outside of HPO's, Secure EHR sharing programs are available (Sync for Science, AuORP piloted program)





## Data Elements-Personal Health Technology

#### **Digital Health Data Provided by**

- Mobile Phones
- Wellness and Fitness Devices
- Other Sensors
- Mobile Apps

Longitudinal Component: Minute-level observations

#### **Currently Available (Fitbit)**

- Heart Rate by Zones
- Heart Rate (Minute-Level)
- Daily Activity Summary
- Activity Intraday Steps (Minute-Level)
- Sleep Daily Summary
- Sleep Level (Sequence by Level)





## Data Elements-Biospecimen Collections

## Biospecimens to include collection of:

- Blood
- Urine
- Saliva

The objective of the program regarding biospecimens is to collect samples that would allow for the broadest range of clinical and research assays that could be envisioned for the future and to avoid collection, processing, or storage approaches that would inherently preclude such assays





## Data Elements-Genomics

Currently, the scope of Genomics data available encompasses 98,500+ whole genome sequencing (WGS) samples and 165,000+ genotyping arrays

Only available at the controlled tier access level

## Genomic Data Is Paired With Rich Phenotypic Data



206,100+

Have Whole Genome Sequences + Electronic Health Records + Physical Measurements + Survey Responses



245.100+

Have Whole Genome Sequences + Physical Measurements + Survey Responses



206.150+

Have Whole Genome Sequences + Electronic Health Records



8,800+

Have Whole Genome Sequences + Fitbit Records
Fitbit data may include physical activity, step counts, heart rate, and sleep data





## Data Elements-Genomics

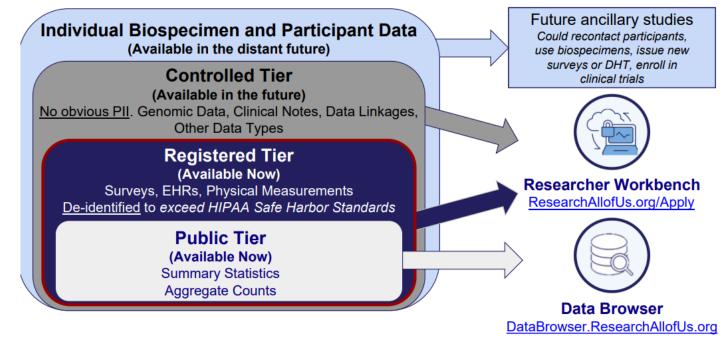
#### All of Us Genomic Data Formats

| heg.               |                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                  |                                                                                                                               |                                                                                                  |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
|                    | srWGS SNP & Indel                                                                                                                                                                                                                                                                                                                                                           | srWGS SVs                                                                                        | IrWGS                                                                                                                         | Array                                                                                            |
| Raw Data           | ● CRAM files                                                                                                                                                                                                                                                                                                                                                                | ● CRAM files                                                                                     | <ul> <li>CRAM files</li> <li>Graphical Fragment         Assembly (GFA) files</li> <li>FASTA files</li> </ul>                  | ● IDAT files                                                                                     |
| Variant Data       | <ul> <li>VariantDataset (VDS)</li> <li>Variant Call Format<br/>(VCF)</li> <li>Hail MatrixTable</li> <li>BGEN</li> <li>PLINK bed files</li> </ul>                                                                                                                                                                                                                            | ● Joint Called<br>VCF                                                                            | <ul><li>Variant Call Format (VCF)</li><li>Hail MatrixTable</li></ul>                                                          | <ul> <li>Variant Call Format (VCF)</li> <li>Hail MatrixTable</li> <li>PLINK bed files</li> </ul> |
| Auxiliary<br>Files | <ul> <li>Variant Annotation         <ul> <li>Table</li> </ul> </li> <li>Relatedness</li> <li>Maximal set of         <ul> <li>unrelated samples</li> </ul> </li> <li>Ancestry</li> <li>Limited region callset             <ul> <li>UCSC BED files</li> <li>Flagged samples</li> <li>srWGS Genomic                     <ul> <li>metrics file</li> </ul> </li> </ul></li></ul> | Ancestry and relatedness available for srWGS samples based on the srWGS SNP & Indel deliverables | Ancestry and relatedness available for IrWGS samples based on the srWGS SNP & Indel deliverables  IrWGS variant metrics files | Ancestry and relatedness available for array samples that have srWGS data                        |





## Researchers Prospective


#### Workbench

## Working environment with abilities to:

- build cohorts & data sets
- Perform R/Python data analysis

#### Tiers of access

#### Tiered Data and Resource Access







## **An Overview of Cancer in the First** 315,000 All of Us Participants

#### **Data Elements used:**

Survey- Demographics, Cancer Diagnosis EHR – Demographics, Cancer Diagnosis Introduction: The NIH All of Us Research Program will have the scale and scope to enable research for a wide range of diseases, including cancer. The program's focus on diversity and inclusion promises a better understanding of the unequal burden of cancer. Preliminary cancer ascertainment in the All of Us cohort from two data sources (self-reported versus electronic health records (EHR)) is considered.

**Materials and methods:** This work was performed on data collected from the All of Us Research Program's 315,297 enrolled participants to date using the Researcher Workbench, where approved researchers can access and analyze All of Us data on cancer and other diseases. Cancer case ascertainment was performed using data from EHR and self reported surveys across key factors. Distribution of cancer types and concordance of data sources by cancer site and demographics is analyzed.

Results and discussion: Data collected from 315,297 participants resulted in 13,298 cancer cases detected in the survey (in 89,261 participants), 23,520 cancer cases detected in the EHR (in 203,813 participants), and 7,123 cancer cases detected across both sources (in 62,497 participants). Key differences in survey completion by race/ethnicity impacted the makeup of cohorts when compared to cancer in the EHR and national NCI SEER data.

**Conclusions:** This study provides key insight into cancer detection in the All of Us Research Program and points to the existing strengths and limitations of All of Us as a platform for cancer research now and in the future.





# An Overview of Cancer in the First 315,000 All of Us Participants

Table 2. The relative distribution and prevalence of cancer cases by type in the All of Us Research Program from self-reported survey data and electronic health record overall.

|                  | EHR    |        |            |        | Survey Dat | a          | EHR + Survey |        |            |  |
|------------------|--------|--------|------------|--------|------------|------------|--------------|--------|------------|--|
|                  | N      | % dist | prevalence | N      | % dist     | prevalence | N            | % dist | prevalence |  |
| Population       |        |        | 203,813    |        |            | 89,261     |              |        | 62,497     |  |
| Total Cancers    | 23,520 | -      | 11.54%     | 13,298 | -          | 14.90%     | 7,123        | -      | 11.40%     |  |
| Bladder          | 983    | 4.18%  | 0.48%      | 483    | 3.63%      | 0.54%      | 301          | 4.23%  | 0.48%      |  |
| Blood            | 4,841  | 20.58% | 2.38%      | 1,113  | 8.37%      | 1.25%      | 657          | 9.22%  | 1.05%      |  |
| Bone             | 350    | 1.49%  | 0.17%      | 181    | 1.36%      | 0.20%      | 107          | 1.50%  | 0.17%      |  |
| Brain            | 612    | 2.60%  | 0.30%      | 182    | 1.37%      | 0.20%      | 102          | 1.43%  | 0.16%      |  |
| Breast           | 6,474  | 27.53% | 3.18%      | 4,062  | 30.55%     | 4.55%      | 2,499        | 35.08% | 4.00%      |  |
| Cervix           | 576    | 2.45%  | 0.28%      | 869    | 6.53%      | 0.97%      | 172          | 2.41%  | 0.28%      |  |
| Colon & Rectum   | 2,601  | 11.06% | 1.28%      | 722    | 5.43%      | 0.81%      | 385          | 5.41%  | 0.62%      |  |
| Endocrine System | 1,887  | 8.02%  | 0.93%      | 129    | 0.97%      | 0.14%      | 63           | 0.88%  | 0.10%      |  |
| Endometrium      | 1,364  | 5.80%  | 0.67%      | 459    | 3.45%      | 0.51%      | 212          | 2.98%  | 0.34%      |  |
| Esophagus        | 230    | 0.98%  | 0.11%      | 110    | 0.83%      | 0.12%      | 60           | 0.84%  | 0.10%      |  |
| Eye              | 123    | 0.52%  | 0.06%      | 66     | 0.50%      | 0.07%      | 28           | 0.39%  | 0.04%      |  |
| Head & Neck      | 1,698  | 7.22%  | 0.83%      | 333    | 2.50%      | 0.37%      | 155          | 2.18%  | 0.25%      |  |
| Kidney           | 1,266  | 5.38%  | 0.62%      | 487    | 3.66%      | 0.55%      | 313          | 4.39%  | 0.50%      |  |
| Lung             | 1,081  | 4.60%  | 0.53%      | 463    | 3.48%      | 0.52%      | 283          | 3.97%  | 0.45%      |  |
| Ovary            | 786    | 3.34%  | 0.39%      | 348    | 2.62%      | 0.39%      | 207          | 2.91%  | 0.33%      |  |
| Pancreas         | 548    | 2.33%  | 0.27%      | 119    | 0.89%      | 0.13%      | 77           | 1.08%  | 0.12%      |  |
| Prostate         | 3,971  | 16.88% | 1.95%      | 2,165  | 16.28%     | 2.43%      | 1,304        | 18.31% | 2.09%      |  |
| Stomach          | 320    | 1.36%  | 0.16%      | 76     | 0.57%      | 0.09%      | 35           | 0.49%  | 0.06%      |  |
| Thyroid          | 1,648  | 7.01%  | 0.81%      | 924    | 6.95%      | 1.04%      | 573          | 8.04%  | 0.92%      |  |

<sup>\*</sup>Skin cancer is excluded from the analysis as it is not differentiated as malignant/non-malignant/melanoma in AoU survey.





# An Overview of Cancer in the First 315,000 All of Us Participants

Table 4. Comparison of relative distribution and prevalence of cancer cases by type in the All of Us Research Program to SEER's 26-year limited duration prevalence.

|                  | EHR Survey Data |        |            | ata    |        | EHR + Su   | ırvey | SEER 26-year prevalence |            |            |        |             |
|------------------|-----------------|--------|------------|--------|--------|------------|-------|-------------------------|------------|------------|--------|-------------|
|                  | N               | % dist | prevalence | N      | % dist | prevalence | N     | % dist                  | prevalence | N          | % dist | prevalence  |
| Population       |                 |        | 203,813    |        |        | 89,261     |       |                         | 62,497     |            |        | 325,836,757 |
| Total Cancers    | 23,520          | -      | 11.54%     | 13,298 | -      | 14.90%     | 7,123 | -                       | 11.40%     | 14,419,319 |        | 4.43%       |
| Bladder          | 983             | 4.18%  | 0.48%      | 483    | 3.63%  | 0.54%      | 301   | 4.23%                   | 0.48%      | 555,999    | 3.86%  | 0.17%       |
| Blood            | 4,841           | 20.58% | 2.38%      | 1,113  | 8.37%  | 1.25%      | 657   | 9.22%                   | 1.05%      | 1,343,512  | 9.32%  | 0.41%       |
| Bone             | 350             | 1.49%  | 0.17%      | 181    | 1.36%  | 0.20%      | 107   | 1.50%                   | 0.17%      | 33,086     | 0.23%  | 0.01%       |
| Brain            | 612             | 2.60%  | 0.30%      | 182    | 1.37%  | 0.20%      | 102   | 1.43%                   | 0.16%      | 129,633    | 0.90%  | 0.04%       |
| Breast           | 6,474           | 27.53% | 3.18%      | 4,062  | 30.55% | 4.55%      | 2,499 | 35.08%                  | 4.00%      | 3,096,156  | 21.47% | 0.95%       |
| Cervix           | 576             | 2.45%  | 0.28%      | 869    | 6.53%  | 0.97%      | 172   | 2.41%                   | 0.28%      | 182,868    | 1.27%  | 0.06%       |
| Colon & Rectum   | 2,601           | 11.06% | 1.28%      | 722    | 5.43%  | 0.81%      | 385   | 5.41%                   | 0.62%      | 1,134,250  | 7.87%  | 0.35%       |
| Endocrine System | 1,887           | 8.02%  | 0.93%      | 129    | 0.97%  | 0.14%      | 63    | 0.88%                   | 0.10%      | 70,825     | 0.49%  | 0.02%       |
| Endometrium      | 1,364           | 5.80%  | 0.67%      | 459    | 3.45%  | 0.51%      | 212   | 2.98%                   | 0.34%      | 632,326    | 4.39%  | 0.19%       |
| Esophagus        | 230             | 0.98%  | 0.11%      | 110    | 0.83%  | 0.12%      | 60    | 0.84%                   | 0.10%      | 21,960     | 0.15%  | 0.01%       |
| Eye              | 123             | 0.52%  | 0.06%      | 66     | 0.50%  | 0.07%      | 28    | 0.39%                   | 0.04%      | ~          | ~      | ~           |
| Head & Neck      | 1,698           | 7.22%  | 0.83%      | 333    | 2.50%  | 0.37%      | 155   | 2.18%                   | 0.25%      | 396,937    | 2.75%  | 0.12%       |
| Kidney           | 1,266           | 5.38%  | 0.62%      | 487    | 3.66%  | 0.55%      | 313   | 4.39%                   | 0.50%      | 451,550    | 3.13%  | 0.14%       |
| Lung             | 1,081           | 4.60%  | 0.53%      | 463    | 3.48%  | 0.52%      | 283   | 3.97%                   | 0.45%      | 423,209    | 2.94%  | 0.13%       |
| Ovary            | 786             | 3.34%  | 0.39%      | 348    | 2.62%  | 0.39%      | 207   | 2.91%                   | 0.33%      | 167,758    | 1.16%  | 0.05%       |
| Pancreas         | 548             | 2.33%  | 0.27%      | 119    | 0.89%  | 0.13%      | 77    | 1.08%                   | 0.12%      | 65,973     | 0.46%  | 0.02%       |
| Prostate         | 3,971           | 16.88% | 1.95%      | 2,165  | 16.28% | 2.43%      | 1,304 | 18.31%                  | 2.09%      | 3,017,103  | 20.92% | 0.93%       |
| Stomach          | 320             | 1.36%  | 0.16%      | 76     | 0.57%  | 0.09%      | 35    | 0.49%                   | 0.06%      | 96,886     | 0.67%  | 0.03%       |
| Thyroid          | 1,648           | 7.01%  | 0.81%      | 924    | 6.95%  | 1.04%      | 573   | 8.04%                   | 0.92%      | 660,323    | 4.58%  | 0.20%       |

<sup>\*</sup>Skin cancer is excluded from the analysis as it is not differentiated as malignant/non-malignant/melanoma in AoU survey.





<sup>\*</sup> SEER data is based on 5-year prevalence frequency counts of 1st invasive tumor.

# An Overview of Cancer in the First 315,000 All of Us Participants

Table 4. Comparison of relative distribution and prevalence of cancer cases by type in the All of Us Research Program to SEER's 26-year limited duration prevalence.

|               |        | EHR    |            | Survey Data |        |            | EHR + Survey |        |            | SEER 26-year prevalence |        |             |
|---------------|--------|--------|------------|-------------|--------|------------|--------------|--------|------------|-------------------------|--------|-------------|
|               | N      | % dist | prevalence | N           | % dist | prevalence | N            | % dist | prevalence | N                       | % dist | prevalence  |
| Population    |        |        | 203,813    |             |        | 89,261     |              |        | 62,497     |                         |        | 325,836,757 |
| Total Cancers | 23,520 | -      | 11.54%     | 13,298      | -      | 14.90%     | 7,123        | -      | 11.40%     | 14,419,319              |        | 4.43%       |
| Bladder       | 983    | 4.18%  | 0.48%      | 483         | 3.63%  | 0.54%      | 301          | 4.23%  | 0.48%      | 555,999                 | 3.86%  | 0.17%       |
| Blood         | 4.841  | 20.58% | 2 38%      | 1 113       | 8 3 7% | 1.25%      | 657          | 9.22%  | 1.05%      | 1 343 512               | 932%   | 0.41%       |

|               | EHR    |        | Survey Data |                 |       |       | EHR + Survey |     |       |        | SEER 26-year prevalence |       |           |         |       |             |
|---------------|--------|--------|-------------|-----------------|-------|-------|--------------|-----|-------|--------|-------------------------|-------|-----------|---------|-------|-------------|
|               | N      | % dist | prevalence  | N               | % (   | list  | prevalenc    | e   | N     | % dist | preva                   | ence  | N         | % d     | ist   | prevalence  |
| Population    |        |        | 203,813     |                 |       |       | 89,261       |     |       |        | 62,4                    | 97    |           |         |       | 325,836,757 |
| Total Cancers | 23,520 | -      | 11.54%      | 13,298          |       | -     | 14.90%       | 7   | ,123  | -      | 11.4                    | 0%    | 14,419,31 | 19      |       | 4.43%       |
|               |        |        |             | Lye<br>l & Neck | 1,698 | 7.22% |              | 333 | 2.50% |        | 155                     | 2.18% | 0.04%     | 396,937 | 2.75% | 0.12%       |

| Eye         | 123   | 0.5270 | 0.0070 | 00    | 0.5070 | 0.07 70 | 40    | 0.3370 | 0.0470 | ~         | ~      | ~     |
|-------------|-------|--------|--------|-------|--------|---------|-------|--------|--------|-----------|--------|-------|
| Head & Neck | 1,698 | 7.22%  | 0.83%  | 333   | 2.50%  | 0.37%   | 155   | 2.18%  | 0.25%  | 396,937   | 2.75%  | 0.12% |
| Kidney      | 1,266 | 5.38%  | 0.62%  | 487   | 3.66%  | 0.55%   | 313   | 4.39%  | 0.50%  | 451,550   | 3.13%  | 0.14% |
| Lung        | 1,081 | 4.60%  | 0.53%  | 463   | 3.48%  | 0.52%   | 283   | 3.97%  | 0.45%  | 423,209   | 2.94%  | 0.13% |
| Ovary       | 786   | 3.34%  | 0.39%  | 348   | 2.62%  | 0.39%   | 207   | 2.91%  | 0.33%  | 167,758   | 1.16%  | 0.05% |
| Pancreas    | 548   | 2.33%  | 0.27%  | 119   | 0.89%  | 0.13%   | 77    | 1.08%  | 0.12%  | 65,973    | 0.46%  | 0.02% |
| Prostate    | 3,971 | 16.88% | 1.95%  | 2,165 | 16.28% | 2.43%   | 1,304 | 18.31% | 2.09%  | 3,017,103 | 20.92% | 0.93% |
| Stomach     | 320   | 1.36%  | 0.16%  | 76    | 0.57%  | 0.09%   | 35    | 0.49%  | 0.06%  | 96,886    | 0.67%  | 0.03% |
| Thyroid     | 1,648 | 7.01%  | 0.81%  | 924   | 6.95%  | 1.04%   | 573   | 8.04%  | 0.92%  | 660,323   | 4.58%  | 0.20% |

<sup>\*</sup>Skin cancer is excluded from the analysis as it is not differentiated as malignant/non-malignant/melanoma in AoU survey.





<sup>\*</sup> SEER data is based on 5-year prevalence frequency counts of 1st invasive tumor.

Characterizing phenotypic abnormalities associated w/ high-risk individuals developing lung cancer using AoU electronic health records

#### **Data Elements used:**

Survey- Demographics, Smoking Status EHR – Clinical Phenotype Retrieval

**Objective:** The study sought to test the feasibility of conducting a phenome-wide association study to characterize phenotypic abnormalities associated with individuals at high risk for lung cancer using electronic health records.

Materials and Methods: We used the beta release of the All of Us Researcher Workbench with clinical and survey data from a population of 225 000 subjects. We identified 3 cohorts of individuals at high risk to develop lung cancer based on (1) the 2013 U.S. Preventive Services Task Force criteria, (2) the long-term quitters of cigarette smoking criteria, and (3) the younger age of onset criteria. Logistic regression analysis to identify the associations between individuals' phenotypes and their risk categories. We validated our findings against a lung cancer cohort from the same population and conducted an expert review to understand whether these associations are known or potentially novel.

**Results:** We found a total of 214 statistically significant associations (P < .05 with a Bonferroni correction and odds ratio > 1.5) enriched in the highrisk individuals from 3 cohorts, and 15 enriched in the low-risk individuals. Forty significant associations enriched in the high-risk individuals and 13 enriched in the low-risk individuals were validated in the cancer cohort. Expert review identified 15 potentially new associations enriched in the high-risk individuals.

**Conclusions:** It is feasible to conduct a phenome-wide association study to characterize phenotypic abnormalities associated in high-risk individuals developing lung cancer using electronic health records. The All of Us Research Workbench is a promising resource for the research studies to evaluate and optimize lung cancer screening criteria.





Characterizing phenotypic abnormalities associated w/ high-risk individuals developing lung cancer using AoU electronic health records

#### **Data Elements used:**

Survey- Demographics, Smoking Status EHR – Clinical Phenotype Retrieval

| Risk Group                                | Case                        | Control   |
|-------------------------------------------|-----------------------------|-----------|
| '13 USPSTF                                | 2,594                       | 5024      |
| Long-term Quitters of Smoking             | 990                         | 1,951     |
| Younger age                               | 538                         | 1006      |
| Cancer Cohort                             | 445                         | 507       |
| Risk Group                                | Significant<br>Associations | Validated |
|                                           |                             |           |
| '13 USPSTF                                | 153                         | 39        |
| '13 USPSTF  Long-term Quitters of Smoking | 153<br>141                  | 39<br>34  |

**Conclusions:** It is feasible to conduct a phenome-wide association study to characterize phenotypic abnormalities associated in high-risk individuals developing lung cancer using electronic health records. The All of Us Research Workbench is a promising resource for the research studies to evaluate and optimize lung cancer screening criteria.





Characterizing phenotypic abnormalities associated w/ high-risk individuals developing lung cancer using AoU electronic health records

Table 6. Expert review results for the validated phenotypes

| Phecode | Phenotype                                                | Category                | Review Results |
|---------|----------------------------------------------------------|-------------------------|----------------|
| 433.1   | Occlusion and stenosis of precerebral arteries           | Circulatory system      | 2              |
| 433.11  | Occlusion of cerebral arteries, with cerebral infarction | Circulatory system      | 2              |
| 440.9   | Atherosclerosis of aorta                                 | Circulatory system      | 2              |
| 443.8   | Other specified peripheral vascular diseases             | Circulatory system      | 2              |
| 443.9   | Peripheral vascular disease, unspecified                 | Circulatory system      | 2              |
| 681     | Superficial cellulitis and abscess                       | Dermatologic            | 2              |
| 681.3   | Cellulitis and abscess of arm/hand                       | Dermatologic            | 2              |
| 288.2   | Elevated white blood cell count                          | Hematopoietic           | 2              |
| 70.3    | Viral hepatitis C                                        | Infectious diseases     | 2              |
| 90      | Sexually transmitted infections (not HIV or hepatitis)   | Infectious diseases     | 2              |
| 851     | Complications of transplants and reattached limbs        | Injuries and poisonings | 1/2            |
| 969     | Poisoning by psychotropic agents                         | Injuries and poisonings | 2              |
| 318     | Tobacco use disorder                                     | Mental disorders        | 1              |
| 296.1   | Bipolar                                                  | Mental disorders        | 2              |
| 317     | Alcohol-related disorders                                | Mental disorders        | 2              |
| 317.1   | Alcoholism                                               | Mental disorders        | 2              |
| 480     | Pneumonia                                                | Respiratory             | 1              |
| 480.11  | Pneumococcal pneumonia                                   | Respiratory             | 1              |
| 496     | Chronic airway obstruction                               | Respiratory             | 1              |
| 496.21  | Obstructive chronic bronchitis                           | Respiratory             | 1              |
| 506     | Empyema and pneumothorax                                 | Respiratory             | 1              |
| 514.2   | Solitary pulmonary nodule                                | Respiratory             | 1              |
| 480.1   | Bacterial pneumonia                                      | Respiratory             | 1/2            |
| 480.3   | Pneumonia due to fungus (mycoses)                        | Respiratory             | 2              |

<sup>1</sup> indicates known association; 2 indicates potentially new association; 1/2 indicates disagreement between reviewers.





Pharmacogenomic testing & prescribing patterns for patients with cancer in a large national precision medicine cohort

#### **Data Elements used:**

Survey- Demographics EHR – Cancer Diagnosis, Medications, & Genomic Testing Population databases could help patients with cancer and providers better understand current pharmacogenomic prescribing and testing practices. This retrospective observational study analysed patients with cancer, drugs with pharmacogenomic evidence and related genetic testing in the National Institutes of Health All of Us database. Most patients with cancer (19,633 (88.3%) vs 2,590 (11.7%)) received  $\geq 1$  drug and 36 (0.2%) received genetic testing, with a significant association between receiving  $\geq 1$  drug and age group (p<0.001), but not sex (p=0.612), race (p=0.232) or ethnicity (p=0.971). Drugs with pharmacogenomic evidence—but not genetic testing—were common for patients with cancer, reflecting key gaps preventing precision medicine from becoming standard of care





Socioeconomic and Racial/Ethnic Disparities in Perception of Health Status and Literacy in Spine Oncological Patients

#### **Data Elements used:**

Survey- Demographics, Health Status EHR – Spinal Tumor Identification **OBJECTIVE:** The aim of this study was to assess socioeconomic and racial disparities in the perception of personal health, health literacy, and healthcare access among spine oncology patients.

**BACKGROUND:** Racial, ethnic, and socioeconomic disparities in health literacy and perception of health status have been described for many disease processes. However, few studies have assessed the prevalence of these disparities among spine oncology patients.

**METHODS:** Adult spine oncology patients, identified using ICD-9/10-CM codes, were categorized by race/ethnicity: White/Caucasian (WC), Black/African-American (BAA), and Non-White Hispanic (NWH). Demographics and socioeconomic status were assessed. Questionnaire responses regarding baseline health status, perception of health status, health literacy, and barriers to healthcare were compared.

RESULTS: Of the 1,175 patients identified, 207 (17.6%) were BAA, 267 (22.7%) NWH, & 701 (59.7%) WC. Socioeconomic status varied among cohorts, with WC patients reporting higher levels of education (p<0.001), annual income greater than \$50K (p<0.001), and home ownership (p<0.001). BAA and NWH patients reported greater rates of 7-day "Severe fatigue" (p<0.001) and "10/10 pain" (p<0.001) and lower rates of "Completely" able to perform everyday activities (p<0.001). WC patients had a higher response rate for "Excellent/Very Good" regarding their own general health (p<0.001) and quality (p<0.001). The WC cohort had a significantly higher proportion of patients responding "Never" when assessing difficulty understanding (p<0.001) and needing assistance with health materials (p<0.001). BAA and NWH were significantly less likely to report feeling "Extremely" confident with medical forms (p<0.001). BAA and NWH had significantly higher response rates to feeling "Somewhat Worried" about healthcare costs (p<0.001) and with delaying medical care given "Can't Afford Co-pay" (p<0.001).

**CONCLUSION:** We identified disparities in perception of health status, literacy, and access among spine oncology patients.





## All of Us: Questions?

Get in touch with the Population Health Shared Resources Team!

Adam.warren@cuanschutz.edu







## All of Us: References

National Institutes of Health *All of Us Research Program Protocol.* 2021.

(2023, June). All of Us Research Hub. https://www.researchallofus.org/



