Personalized Medicine: Implications for Women’s Health

Christina Aquilante, PharmD, FCCP
Professor, Department of Pharmaceutical Sciences
University of Colorado
Objectives

• Identify evidence-based resources that aid in the use of personalized medicine strategies (e.g., pharmacogenomics) in clinical practice

• In the context of women’s health examples, formulate patient-specific medication recommendations based on clinical guidelines, genetic test results, and other patient factors

• Educate patients about the utility of personalized medicine strategies to improve their health
The Era of Precision Medicine

Precision Medicine:

- Approach to disease treatment and prevention that takes into account individual variability in genes, environment, and lifestyle for each person
- “Personalized Medicine” or “Precision Health”
One Drug Does Not Fit All

Absorption
- Enterohepatic and renal handling
- Gastric enzymes
- Pulmonary function
- Transport proteins

Pharmacodynamics
- Membrane receptor sensitivity
- Interactions with macromolecules (e.g., hormones, enzymes)
- Target organ response, adverse events

Distribution
- Body fat composition
- Cardiac output, regional blood flow
- Total blood, plasma, and RBC volumes
- Total body, intracellular, and extracellular water

Elimination
- Glomerular filtration rate
- Renal blood flow
- Tubular secretion, reabsorption

Metabolism
- Dose
- Lipid solubility
- Protein binding and cytochromes P450
- Route of exposure

References:
JAMA Intern Med 2020 Feb. PMID 32040165
Pharmacogenomics (PGx)

- Component of precision and personalized medicine

- How does genetic variation contribute to variability in drug disposition, response, and toxicity?

- Use genetic information to **guide drug selection and dosing** to maximize efficacy and minimize adverse effects

National Human Genome Research Institute, www.genome.gov
Information Overload

• **Thousands** of clinical PGx studies in the literature

• **Not all PGx knowledge merits clinical implementation!**

• Need to demonstrate:
 • Clinical Validity: ability of the PGx test to predict the presence or absence of a medication-related phenotype
 • Clinical Utility (actionability): likelihood that a PGx test will alter clinical outcomes or treatment strategies

• **How do we prioritize the existing evidence?**
Pharmacogenomics Knowledgebase (PharmGKB)

- Collects, curates and disseminates knowledge about PGx
 - Annotate genetic variants and gene-drug-disease relationships via literature review
 - Curate FDA drug labels containing PGx information

- Create clinical annotations for drug-gene pairs based on curated literature
 - Assign “Levels of Evidence” based on criteria such as replication, statistical significance, and study size

www.pharmgkb.org
Clinical Pharmacogenetics Implementation Consortium (CPIC)

• Established in 2009 to address the need for guidelines to instruct clinicians on how to modify drug therapy based on genetic information

• Provide peer-reviewed, evidence-based clinical guidelines for select gene-drug pairs

• Designed to help clinicians understand HOW available genetic test results should be used to optimize drug therapy
 • Key assumption: Clinical high-throughput and pre-emptive genotyping will become widespread

https://cpicpgx.org/
Over 40 Medications with CPIC Guidelines

<table>
<thead>
<tr>
<th>Cardiology</th>
<th>Psychiatry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clopidogrel</td>
<td>SSRIs CYP2D6, CYP2C19</td>
</tr>
<tr>
<td>Simvastatin</td>
<td>TCAs CYP2D6, CYP2C19</td>
</tr>
<tr>
<td>Warfarin</td>
<td>Atomoxetine CYP2D6</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Infectious Disease</td>
<td>Neurology HLA-B, HLA-A</td>
</tr>
<tr>
<td>Abacavir</td>
<td>Carbamazepine HLA-B, HLA-A</td>
</tr>
<tr>
<td>Atazanavir</td>
<td>Oxcarbazepine HLA-B</td>
</tr>
<tr>
<td>Efavirenz</td>
<td>Phenytoin HLA-B, CYP2C9</td>
</tr>
<tr>
<td>Voriconazole</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oncology/Supportive Care</td>
</tr>
<tr>
<td>Rheumatology</td>
<td>Thiopurines TPMT</td>
</tr>
<tr>
<td>Allopurinol</td>
<td>Fluoropyrimidines DPYD</td>
</tr>
<tr>
<td>Thiopurines</td>
<td>Tamoxifene CYP2D6</td>
</tr>
<tr>
<td>Pain Management</td>
<td>Ondansetron CYP2D6</td>
</tr>
<tr>
<td>Codeine</td>
<td>Surgery RYR1, CACNA1S</td>
</tr>
<tr>
<td>Tramadol</td>
<td></td>
</tr>
</tbody>
</table>

Pharmacotherapy 2017 PMID: 28699700

https://cpicpgx.org/
Clinically-Actionable PGx Examples: Women’s Health

- **Clopidogrel**: CYP2C19
 - Variants associated with increased risk of major adverse CV effects

- **Simvastatin**: SLCO1B1
 - Variants associated with increased risk of myopathy

- **Tamoxifen**: CYP2D6
 - Variants associated with decreased efficacy in some studies

- **Codeine**: CYP2D6
 - Variants associated with decreased response or increased risk of adverse effects

- **SSRIs/TCAs**: CYP2C19 and CYP2D6
 - Variants associated with altered dose requirements, response, and risk of adverse effects
Case Study – Mrs. B

• Mrs. B is a 74-year-old woman who presents to her PCP with complaints of fatigue, decreased appetite, and a change in sleep habits over the past few months.

• Her medical history is significant for hyperlipidemia (atorvastatin), hypertension (hydrochlorothiazide), and overactive bladder (oxybutynin). She performs well on cognitive tests and physical exam reveals no underlying illness.

• She used to be active with her church fellowship group, but now spends much of her time at home watching television. She no longer enjoys the weekly visits from her grandchildren.

• Mrs. B had symptoms like this about 8 months ago and was treated with citalopram. She stopped taking the medication after 2 months because “it didn’t do a darn thing.”

Adapted from: Can Fam Physician 2014;60:121–126.
Citalopram and CYP2C19

• Citalopram is administered in its active form and is metabolized by CYP2C19

• DNA variants in the CYP2C19 gene affect how well the enzyme metabolizes citalopram
 - Ultrarapid metabolizers (UMs)
 - Rapid metabolizers (RMs)
 - Normal metabolizers (NMs)
 - Intermediate metabolizers (IMs)
 - Poor metabolizers (PMs)

 • Rapidly convert citalopram to less active metabolites. Low citalopram concentrations in the blood
 • Decreased citalopram efficacy and increased chance for treatment failure

 • Slowly convert citalopram to its less active form. High citalopram concentrations in the blood
 • Increased citalopram efficacy, but also an increased chance for side effects
TRUE OR FALSE:
PGx testing must be conducted with an FDA-approved genetic test
Clinical Laboratory Improvement Amendments (CLIA)

• Regulations governing all laboratory testing (except research) performed on humans in the United States
 • Objective: ensure quality laboratory testing

• Per CLIA, genetic testing is a high-complexity and non-waived test
 – Laboratories that perform this type of testing must meet CLIA requirements for high-complexity, non-waived tests
Scope of Testing

• **Single gene/few variants:** genotype a few variants in (usually) a single gene related to the medication of interest
 • Example: CYP2C19*2, *3, *17 genotyping for clopidogrel

• **Multi-gene/multi-variant panel:** genotype many variants in many pharmacogenes, not necessarily related to the medication(s) of interest
 • Example: panel that interrogates 120 variants covering 30 pharmacogenes

• There are an increasing number of commercial panel-based PGx tests
Mrs. B’s PCP orders a commercially-available multi-gene/variant PGx testing panel

<table>
<thead>
<tr>
<th>Gene</th>
<th>Genotype</th>
<th>Phenotype summary / Metabolic status</th>
</tr>
</thead>
<tbody>
<tr>
<td>CYP1A2</td>
<td>*1A/*1F</td>
<td>Rapid</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Increased activity. Drugs converted to active metabolite(s) may cause side effects or toxicity. Active drugs converted to inactive metabolite(s) may lack efficacy.</td>
</tr>
<tr>
<td>CYP2B6</td>
<td>*1/*5</td>
<td>Intermediate to Normal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Decreased activity. Drugs converted to active metabolite(s) may have reduced efficacy. Active drugs converted to inactive metabolite(s) may cause side effects or toxicity.</td>
</tr>
<tr>
<td>CYP2C9</td>
<td>*1/*3</td>
<td>Intermediate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Decreased activity. Drugs converted to active metabolite(s) may have reduced efficacy. Active drugs converted to inactive metabolite(s) may cause side effects or toxicity.</td>
</tr>
<tr>
<td>CYP2C19</td>
<td>*17/*17</td>
<td>Ultrarapid</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Increased activity. Drugs converted to active metabolite(s) may cause side effects or toxicity. Active drugs converted to inactive metabolite(s) may lack efficacy.</td>
</tr>
<tr>
<td>CYP2C Cluster</td>
<td>rs1775623 G/G</td>
<td>Normal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Normal warfarin clearance associated with CYP2C rs1775623. Independent of CYP2C917 and CYP2C919. CYP2C19 rs1775623, together with CYP2C9, CYP2C8, and VKORC1, influences response to warfarin therapy.</td>
</tr>
<tr>
<td>CYP2D6</td>
<td>*1/*1</td>
<td>Normal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Normal level of activity. Drugs metabolized at a normal rate.</td>
</tr>
<tr>
<td>CYP3A4</td>
<td>*1/*1</td>
<td>Normal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Normal level of activity. Drugs metabolized at a normal rate.</td>
</tr>
<tr>
<td>CYP3A5</td>
<td>*1/*3</td>
<td>Poor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Normal activity. Drugs metabolized at a normal rate. Drugs metabolized at a normal rate.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Poor metabolizing phenotype. Normal dosing may be required because original dosing guidelines for drugs have been established on patients with poor metabolizer phenotype.</td>
</tr>
<tr>
<td>CYP4F2</td>
<td>*1/*1</td>
<td>Normal activity</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Normal activity of the CYP4F2 enzyme, which catalyzes the metabolism of vitamin K, in counterpoint to the activity of VKORC1. CYP4F2, together with CYP2C8, VKORC1, and a variant in CYP2C Clust. Influences response to warfarin therapy.</td>
</tr>
</tbody>
</table>
Case Study – Mrs. B

- PGx test results indicate Mrs. B is a **CYP2C19 ultrarapid metabolizer**

Potential therapeutic options:
- Paroxetine, Venlafaxine

https://cpicpgx.org/guidelines/guideline-for-selective-serotonin-reuptake-inhibitors-and-cyp2d6-and-cyp2c19/
Commercially Available PGx Tests

- Not all PGx tests are created equally – buyer be aware!

- Ask questions!

- Genetics does not guarantee that a medication will work, but it may help minimize the trial-and-error process
Case Study

• For the sake of this example - let’s say the previous PGx report showed that Mrs. B was a CYP2C19 poor metabolizer

• One year later, Mrs. B presents to the ED (at the same health system) with an acute coronary syndrome and she undergoes PCI with stenting

• The cardiologist starts clopidogrel. The cardiologist has no knowledge that Mrs. B. had PGx testing done or that she is a CYP2C19 poor metabolizer.

• Problem: Panel-based PGx tests are being ordered, but they aren’t being integrated in the patient’s health record in a way that benefits the patient over time or that communicates the information to other providers
Integration with the Electronic Health Record

• Enter PGx data into the EHR in a patient-centric and time-independent fashion

• Integrate PGx data into the EHR in a discrete and structured way

• Build clinical decision support tools
 • Surface genetic information and recommendations at the point-of-prescribing
Emerging Area of PGx Research: Hormonal Contraceptives

Influence of Genetic Variants on Steady-State Etonogestrel Concentrations Among Contraceptive Implant Users

Aaron Lazowitz, MD, MScS, Christina L. Aquilante, PharmD, Kris Oreschak, BS, Jeanelle Sheeder, PhD, Maryam Guiahi, MD, MSc, and Stephanie Teal, MD, MPH

CYP3A7*1C variant causes adult expression of CYP3A7 protein and can increase steroid hormone metabolism.

28% of CYP3A7*1C carriers had etonogestrel levels that fell below the threshold for consistent ovulatory suppression.

Obstet Gynecol. 2019;133(4):783-794
Summary

• Genetic variation contributes to interindividual variability in drug disposition, response, and toxicity

• Resources exist to determine if a drug-gene pair has sufficient clinical validity and utility for implementation into practice

• Genetics is only one piece of the clinical pharmacology puzzle
Questions?

• Christina.Aquilante@cuanschutz.edu
Navigating the Labyrinth of Pharmacogenetic Testing: A Guide to Test Selection

Chad A. Bousman1,2,5,* Heather Zierhut4 and Daniel J. Müller5,6

PMID: 31004441

Figure 1. Decision tree for the selection of a clinical pharmacogenetic (PhGx) test. CAP, College of American Pathologists; CLIA, Clinical Laboratory Improvement Amendments; CPC, Clinical Pharmacogenetics Implementation Consortium; FDA, US Food and Drug Administration; IGNITE, Implementing Genomics in Practice; PharmGKB, Pharmacogenomics Knowledgebase; PharmVar, Pharmacogene Variation Consortium.
“Traffic Light” PGx Reports

Color-coded categories on efficacy and tolerability:

Green: Medications may be used as directed

Yellow: Use medications with caution

Red: Use medications with increased caution and more frequent monitoring

GeneSight Psychotropic Results

Patient, Sample
DOB: 7/22/1984

Order Number: 2269
Report Date: 4/10/2014

Antidepressants

USE AS DIRECTED
- desvenlafaxine (Pristiq®)
- levomilnacipran (Fetzima®)

USE WITH CAUTION
- bupropion (Wellbutrin®)
- selegiline (Emsam®)
- sertraline (Zoloft®)
- trazodone (Desyrel®)
- vilazodone (Viibryd®)

USE WITH INCREASED CAUTION AND WITH MORE FREQUENT MONITORING
- amitriptyline (Elavil®)
- citalopram (Celexa®)
- clomipramine (Anafranil®)
- desipramine (Norpramin®)
- doxepin (Sinequan®)
- duloxetine (Cymbalta®)
- escitalopram (Lexapro®)
- fluoxetine (Prozac®)
- fluvoxamine (Luvox®)
- imipramine (Tofranil®)
- mirtazapine (Remeron®)
- nortriptyline (Pamelor®)
- paroxetine (Paxil®)
- venlafaxine (Effexor®)
- vortioxetine (Brintellix®)
Challenges of Relying on Traffic Light Reports to Make Clinical Decisions

• Somewhat of a “black box”

• To what extent do the algorithms incorporate evidence-based information and what are the evidence thresholds?

• To what extent do the algorithms include drug-drug-gene or drug-gene-gene interactions?

• Just because a medication might be in yellow or red bucket, does not necessarily mean you cannot use it
 • E.g., the patient may already be taking a “red” medication and doing just fine!

• Need to evaluate the genotype and phenotype data yourself!

• Need to look at the patient as a whole and take into account their current and past medical and medication history