

Establishing the long-term health and economic effects of screening interventions for type 1 diabetes

Katharina Schoder, MSc¹ Project Team: Dr. Renee Stark¹, Dr. Michael Hanselmann¹, Prof. Dr. Michael Laxy¹

Professorship of Public Health and Prevention School of Medicine and Health Technical University of Munich

14th November 2024

Katharina Schoder has no conflicts of interest.

For this project, Prof. Dr. Michael Laxy has received a research grant from the Leona M. and Harry B. Helmsley Charitable Trust.

Background

- Public health screening of children for islet autoantibodies as implemented in Fr1da is feasible and is linked to better clinical presentation at manifestation of type 1 diabetes (*Ziegler et al. JAMA 2020, Hummel et al. Diabetologia 2023*)
- Screening comes with additional costs and the long-term cost-effectiveness of the screening is unknown (*Karl et al. Diabetes Care 2022*)

Objective

To analyze the cost-effectiveness of the Fr1da Public Health

Screening in children for pre-symptomatic type 1 diabetes (T1D)

Evaluation strategy

Model conceptualization

Data Source

Diabetes Patient Registry Longitudinal data registry of diabetes patients in Germany, **Retrospective cohort** Austria, Switzerland and Luxembourg since 1995 study **Patient-level data** • patient characteristics medical treatments inpatient and outpatient care therapy results concomitant diagnoses and complications Long-term effects of DKA at manifestation

Information on over 90% of pediatric T1D patients in Germany

Retrospective cohort study: Effect of DKA

ПΠ

Assessment of Variables for Matching

Baseline Characteristics at onset of T1D

	<u>Unmatched</u>		
	DKA	No DKA	
total	6,932	22,936	
Age at onset	8.98 (±3.64)	8.83 (±3.53)	
Gender			
Male	3,655 (53%)	12,308 (54%)	
Female	3,277 (47%)	10,628 (46%)	
Migration background	1,973 (28%)	5,020 (22%)	
Degree of urbanization			
Urban	2,320 (33%)	7,767 (34%)	
Suburban	2 <i>,</i> 523 (36%)	8,561 (37%)	
Rural	2 <i>,</i> 039 (29%)	6,460 (28%)	
GISD*			
Low	2,170 (31%)	7,284 (32%)	
Middle	2,382 (34%)	8,030 (35%)	
High	2,380 (34%)	7,622 (33%)	
Weekday of diagnosis			
Weekend	1,196 (17%)	2,675 (11%)	
In the week	5,736 (83%)	20,261 (88%)	
Time of year at diagnosis			
Summer (Apr Sept.)	3,315 (48%)	10,491 (46%)	
Winter (Oct March)	3,617 (52%)	12,445 (54%)	
Relative w/ T1D	99 (1%)	1,115 (5%)	
BMI SDS 3 months after onset	0.07 (±1.15)	0.03 (±1.07)	

Propensity Score Distribution (All Patients)

Mean(SD), N(%); *German Index of Socioeconomic Deprivation

Baseline Characteristics at onset of T1D

	<u>Unmatched</u>		<u>Matched</u>	
	DKA	No DKA	DKA	No DKA
total	6,932	22,936	6,547	6,547
Age at onset	8.98 (±3.64)	8.83 (±3.53)	8.99 (±3.64)	9.03 (±3.50)
Gender				
Male	3 <i>,</i> 655 (53%)	12,308 (54%)	3,441 (53%)	3,436 (52%)
Female	3,277 (47%)	10,628 (46%)	3,106 (47%)	3,111 (48%)
Migration background	1,973 (28%)	5,020 (22%)	1,884 (29%)	1,904 (29%)
Degree of urbanization				
Urban	2,320 (33%)	7,767 (34%)	2,204 (34%)	2,206 (34%)
Suburban	2,523 (36%)	8,561 (37%)	2,398 (37%)	2,437 (37%)
Rural	2,039 (29%)	6,460 (28%)	1,945 (30%)	1,904 (29%)
GISD*				
Low	2,170 (31%)	7,284 (32%)	2,074 (32%)	2,040 (31%)
Middle	2,382 (34%)	8,030 (35%)	2,264 (35%)	2,298 (35%)
High	2,380 (34%)	7,622 (33%)	2,209 (34%)	2,209 (34%)
Weekday of diagnosis				
Weekend	1,196 (17%)	2,675 (11%)	1,127 (17%)	1,109 (17%)
In the week	5,736 (83%)	20,261 (88%)	5,420 (83%)	5,438 (83%)
Time of year at diagnosis				
Summer (Apr Sept.)	3,315 (48%)	10,491 (46%)	3,148 (48%)	3,102 (47%)
Winter (Oct March)	3,617 (52%)	12,445 (54%)	3,399 (52%)	3,445 (53%)
Relative w/ T1D	99 (1%)	1,115 (5%)	99 (2%)	366 (6%)
BMI SDS 3 months after onset	0.07 (±1.15)	0.03 (±1.07)	0.07 (±1.15)	0.08 (±1.08)

RESULTS SUBJECT TO CHANGE

٦Π

Analyzing long- term effects of DKA		Adding parameters to model		
	Caluculation of costs for health care utilization		Run model scenarios	

Discussion

Florian M. Karl, Christiane Winkler, Anette-Gabriele Ziegler, Michael Laxy, Peter Achenbach; Costs of Public Health Screening of Children for Presymptomatic Type 1 Diabetes in Bavaria, Germany. Diabetes Care 1 April 2022; 45 (4): 837–844. https://doi.org/10.2337/dc21-1648

Hummel, S., Carl, J., Friedl, N. et al. Children diagnosed with presymptomatic type 1 diabetes through public health screening have milder diabetes at clinical manifestation. Diabetologia 66, 1633–1642 (2023). https://doi.org/10.1007/s00125-023-05953-0

Ziegler A, Kick K, Bonifacio E, et al. Yield of a Public Health Screening of Children for Islet Autoantibodies in Bavaria, Germany. JAMA. 2020;323(4):339–351. doi:10.1001/jama.2019.21565