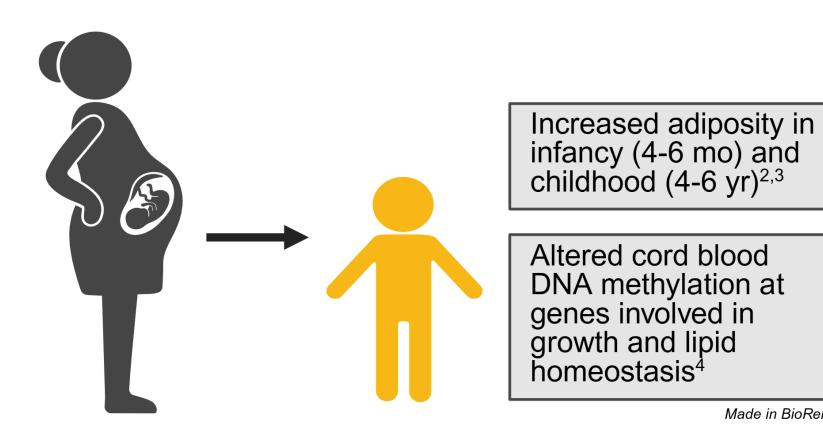
Association of Maternal Serum Per- and Polyfluoroalkyl Substances with Offspring Mesenchymal Stem Cell Transcriptome and DNA Methylation

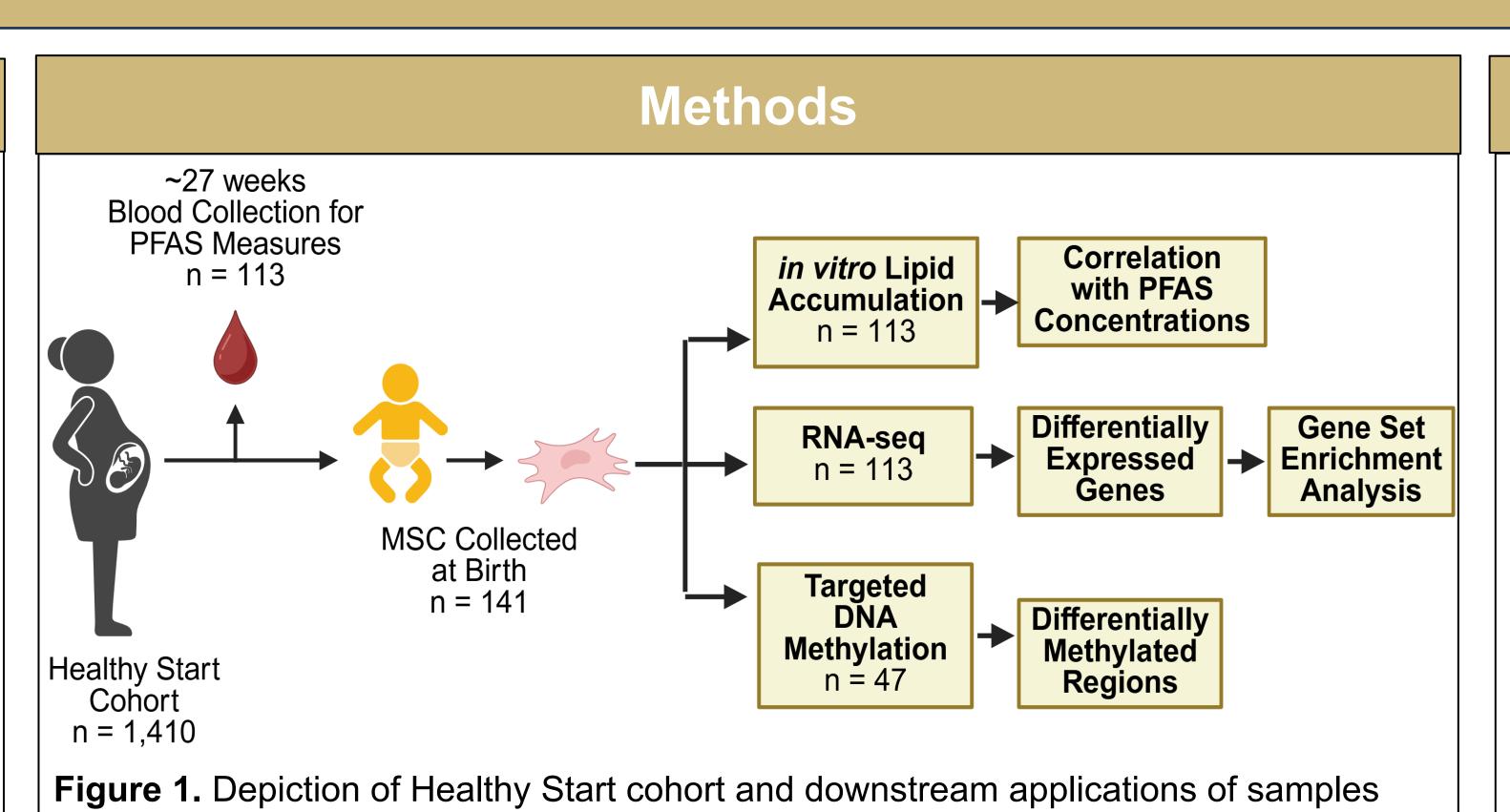


Suzanna C. Kafer^{1,2}, Cheyret Wood³, John L. Adgate⁴, William B. Allshouse⁴, Antonia, M. Calafat⁵, Elizabeth J.Davidson⁶, Ivana V. Yang^{6,7}, Katerina Kechris^{3,8}, Dana Dabelea^{7,8}, Anne P. Starling^{7,8,9}, and Kristen E.Boyle^{1,7}

¹Section of Nutrition, Department of Pediatrics, University of Colorado Anschutz Medical Campus, School of Medicine, University of Colorado Anschutz Medical Campus ³Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO USA ⁴Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA ⁵Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA ⁶Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO USA 7The Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, Aurora, CO USA 8Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO USA 9Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA

Background

- Per- and Polyfluoroalkyl Substances (PFAS) are persistent and ubiquitous environmental pollutants.
- PFAS can cross the placenta during pregnancy and can therefore directly impact fetal development.¹
- Prenatal PFAS exposure is associated with adverse cardiometabolic outcomes in offspring, as previously reported in the Healthy Start Cohort.

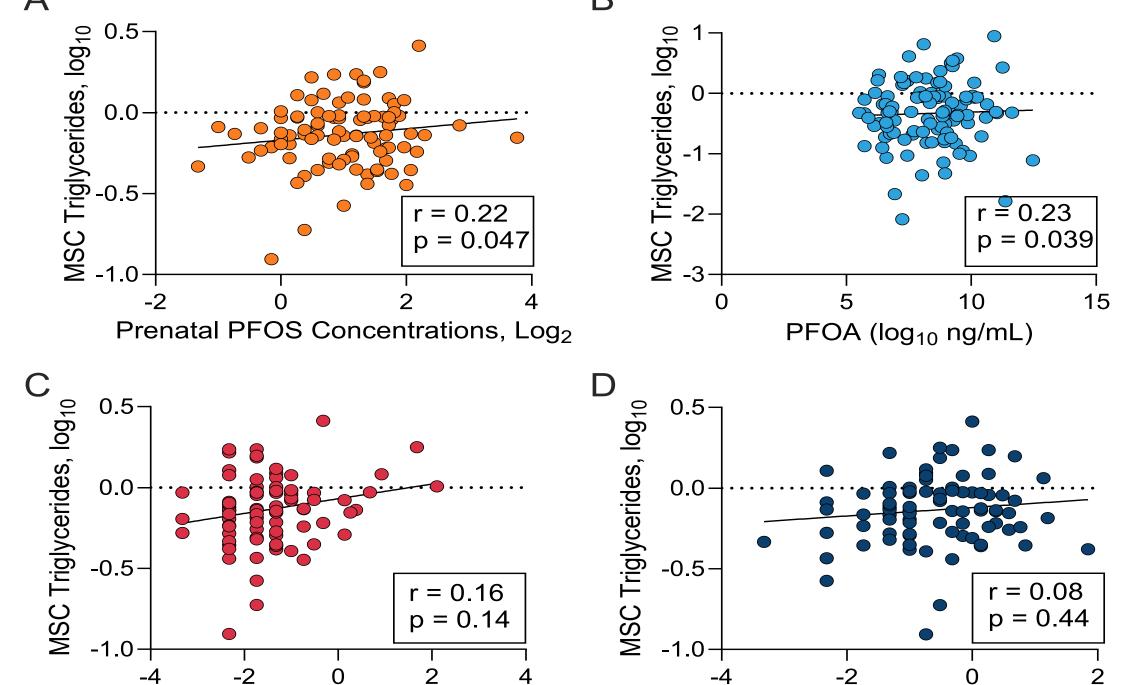


Prenatal PFAS Exposure

- To better understand how prenatal PFAS exposures may be linked to epigenetic signatures promoting long-term adiposityrelated outcomes in offspring, this study utilized offspring MSC from the Healthy Start Cohort.
- Mesenchymal stem cells (MSC) are the precursor to adipocytes and myocytes, which are metabolically critical cell types.
- Offspring umbilical cord-derived MSC phenocopy the offspring from which they are derived, making them a useful tool to investigate the molecular mechanisms underpinning offspring metabolic phenotypes.

Hypothesis

Prenatal PFAS exposure is associated with transcriptomic and epigenetic changes in infant MSCs, primarily in genes related to lipid metabolism and cardiometabolic pathways.


collected and utilized for this study. Created in BioRender.

Maternal Characteristics 28.6 (6.1) Maternal Age in Years, Mean (SD) 68 (61.8%) Pre-pregnancy BMI (kg/m²), Mean (SD) **Offspring Characteristics** 62 (44%) Females, n (%) 39.5 (1.2) Gestational age at birth, weeks, Mean (SD) Birth weight, grams, Mean (SD) 3272 (429)

Cohort Characteristics

MSC Triglyceride Content is Correlated with PFAS Concentrations

Prenatal PFHxS Concentrations, Log₂

Prenatal PFNA2 Concentrations, Log₂

Figure 2. MSC triglyceride content after 21 days adipogenesis is correlated with prenatal PFOS (A), PFOA (B), PFNA2 (C), and PFHXS (D).

Maternal PFAS Levels Are Associated with Changes in MSC Transcription

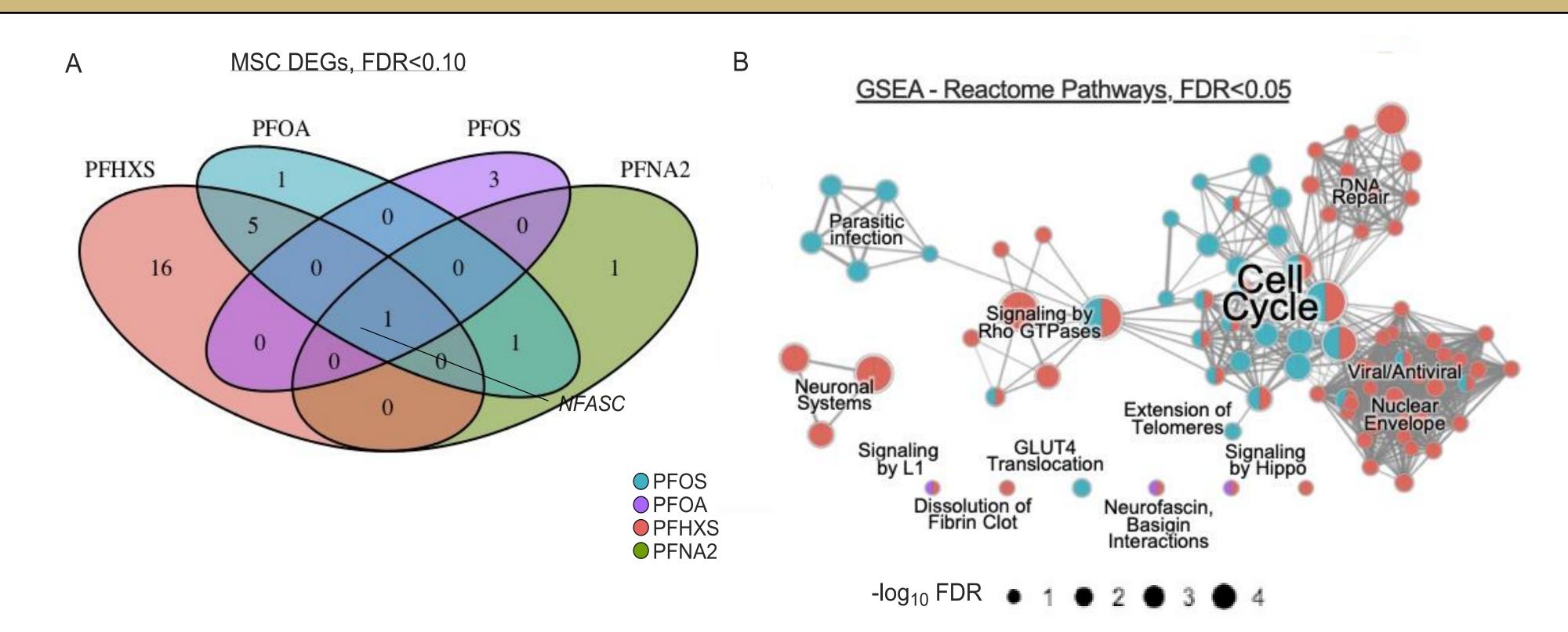


Figure 3. (A) Venn diagram of overlapping transcripts associated with maternal serum chemical concentrations at FDR<0.10. (B) Reactome pathways associated with maternal PFOA n=35, PFHxS (n=70), and PFOS.

Maternal PFOS and PFHxS Levels Are Associated With Changes in MSC DNA Methylation

	Gene	Region	Normalized Enrichment Score	Adjusted P-Value
PFOS	TRIM55	promoters	-1.8206	0.0342
	NFASC	gene	1.6532	0.0595
	L1CAM	promoters	-1.6221	0.0782
	WNT4	promoters	1.6516	0.0782
	NFASC	CGI	1.6513	0.3617

	Gene	Region	Enrichment Score	Adjusted P-Value
PFHxS	NFASC	promoters	1.7762	0.0064
	TRIM55	gene	-1.9041	0.0144
	TRIM55	CGI	1.7896	0.0221
	chr1:204950982- 204951210 (FASC)	CGI	1.7697	0.0910
	TXNDC5	gene	1.6804	0.0289

Figure 4. Top 5 differentially methylated regions in association with PFOS and PFHxS.

Conclusion

Prenatal PFAS levels are associated with transcriptomic and DNA methylation changes in infant MSCs, which may contribute to increased metabolic risk.

Funding Sources

This work was supported by grants from the National Institute of Environmental Health Sciences (R01ES022934), NIH Environmental Influences on Child Health Outcomes (ECHO) Program (NIH 1UG3OD023248 to DD), R01DK117168 to KEB, the American Diabetes Association (1-18-ITCS-016 to KEB), the parent Healthy Start Study (NIH R01 DK076648 to DD), and the Colorado Clinical and Translational Sciences Institute (UL1 TR001082) for maternal visits and collection of birth measures. The CU Anschutz Genomics Shared Resource that analyzed the RNA sequencing is supported by CU Anschutz Cancer Center (P30CA046934).

References

¹Fromme H, Mosch C, Morovitz M, et al. Pre- and Postnatal Exposure to Perfluorinated Compounds (PFCs). *Environ Sci Technol*. 2010;44(18):7123-7129 ²Starling AP, Adgate JL, Hamman RF, Kechris K, Calafat AM, Dabelea D. Prenatal exposure to per- and polyfluoroalkyl substances and infant growth and adiposity: the Healthy Start Study. *Environ Int*. 2019;131:104983.

³Starling AP, Friedman C, Boyle KE, et al. Prenatal exposure to per- and polyfluoroalkyl substances and early childhood adiposity and cardiometabolic health in the Healthy Start study. *Int J Obes 2005*. 2024;48(2):276-283.

⁴Starling AP, Liu C, Shen G, et al. Prenatal Exposure to Per- and Polyfluoroalkyl Substances, Umbilical Cord Blood DNA Methylation, and Cardio-Metabolic Indicators in

Newborns: The Healthy Start Study. Environ Health Perspect. 2020;128(12):127014.