Next-Generation Sequencing In Bone and Soft Tissue Infection

Aaron Ishmael BS¹; Bennie Lindeque MD, PhD^{1,2}

¹University of Colorado School of Medicine; ²University of Colorado Hospital Department of Orthopedics

Background

-Bone and soft-tissue infections (BSTIs) are challenging to diagnose and treat, regularly requiring repeat cultures, serial debridement, and multiple courses of antibiotics.

-Culture-based detection is challenged by prior antibiotic administration, fastidious organisms, and polymicrobial infections.

-Fungal and acid-fast bacilli (AFB) cultures are plagued by extensive turnaround times (TATs).

-We hypothesize that, in comparison to culture, next-generation sequencing (NGS) will provide a greater wealth of microbial data, produce comparable or faster turnaround times (TATs), and serve as an economical clinical addition.

-To the author's knowledge, this is the first study to both compare costs and TATs for NGS and all four culture modalities (aerobic, anaerobic, fungal, and acid-fast bacilli) in the context of orthopedic infections.

Methods and Demographics

-We retrospectively identified and reviewed 26 patients presenting with confirmed or suspected BSTIs requiring surgical biopsy and/or surgical irrigation and debridement from May 2023 to August 2024.

-All patients received both NGS and cultures and were analyzed regarding identified organisms, TATs, and cost. Clinical findings were provided for medical context.

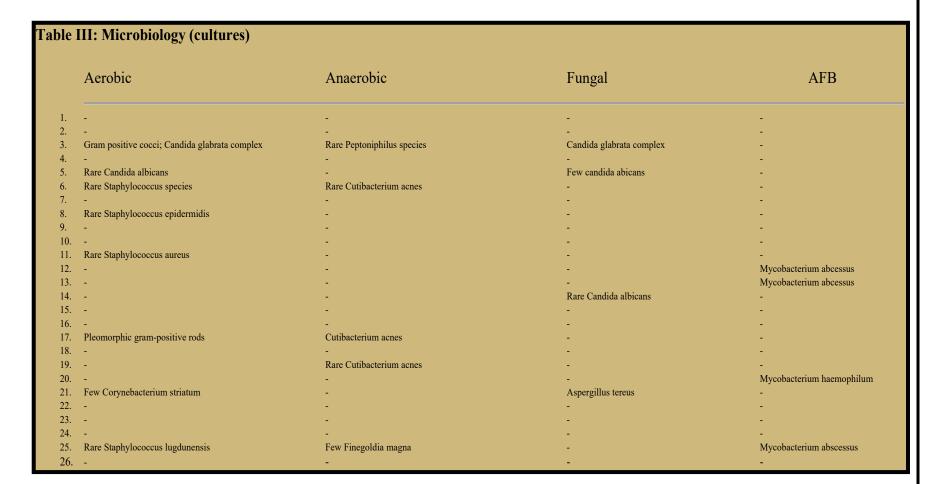
-All cultures were performed at the University of Colorado Hospital. NGS was outsourced to MicroGenDX (Lubbock, Texas, USA) using the OrthoKEY Surgery protocol.

-Bone and/or tissue samples were collected at the start of the operation before application of local anesthetic. The sample was sectioned with equal partitions sent for culture and NGS.

-For microbiological analysis, data were organized into four groups, each containing a combination of positive and/or negative culture and NGS results.

-Of n=26 patients, 15/26 (57.7%) were male. Mean and median ages at the time of operation were 60.2 and 70.5, respectively. Age range at the time of operation was 21 to 80.

-Most patients, 23/26 (88.5%), had a prior documented history of site infection or surgery, and 17/26 (65.4%) required a subsequent intervention. Of this group, 9/26 (34.6%) required more than one intervention, with 1/26 (3.9%) requiring five or more interventions. Lastly, 3/26 (11.5%) required a rTKA or rTHA, and 1/26 (3.8%) required an above-knee amputation.


Tables and Figures

Patient Number	Anatomical Location	Hardware Present	Suspected Etiology
1.	L. Pelvis	N	TB/NTM Exposure
2.	L. Knee	Y	PJI
3.	R. Knee	Y	PJI
4.	R. Knee	N	Bacteremia
5.	L. Hip	Y	PJI
6.	R. Shoulder	Y	PJI
7.	L. Elbow	N	Prior Intervention
8.	L. Femur	N	Bone Cyst
9.	R. Knee	Y	PJI
10.	R. Hip	Y	PJI
11.	R. Hip	Y	Prior Intervention
12.	R. Chest	N	Prior Intervention
13.	R. Knee	N	Trauma
14.	R. Knee	N	Osteomyelitis
15.	L. Femur	Y	Prior Intervention
16.	L. Finger	N	Bacteremia
17.	L. Ankle	N	Tumor
18.	L. Knee	N	Prior Intervention
19.	R. Pelvis	N	Prior Intervention
20.	R. Ankle	N	Immunosup.
21.	L. Knee	N	Unclear
22.	L. Knee	Y	РЛ
23.	R. Knee	N	Prior Intervention
24.	L. Pelvis	N	Unclear
25.	L. Knee	Y	PJI
26.	R. Knee	Y	РЛ

: Anatomical Location and Suspected Etiology of Patient Infection

	Mean	Median	Range
Aerobic	4.8	5	3-7
Anaerobic	9.3	7	4-14
Fungal	29.9	30	29-31
AFB	54.5	57	39-63
NGS c-r*	7.0	6	4-11
NGS r-r [†]	4.5	5	2-7

	Next-generation sequencing	Resistan
1.	-	-
2.	Streptococcus oralis 97%; Granulicatella adiacens 2%	tetM
3.	Peptoniphilus vaginalis 38%; Peptoniphilus harei 18%; Staphylococcus epidermidis 8%; Anaerococcus vaginalis 6%	tetM
4.	Escherichia coli 86%	-
5.		-
6.	Staphylococcus epidermidis 99%	-
7.	Staphylococcus aureus 76%; Corynebacterium tuberculostearicum 21%	-
8.	-	-
9.	-	-
10.	-	-
11.	Staphylococcus aureus 100%	-
12.	Kocuria rhizophila 92%; Dermacoccus nishinomiyaensis 7%	-
13.		-
14.	Candida albicans 100%	-
15.		-
16.	Mycobacterium haemophilum 72%	-
17.		-
18.	·	-
19.	Arcanobacterium haemolyticum 27%; Streptococcus anginosus 24%; Finegoldia magna 16%; Cutibacterium acnes 16%; Veillonella parvula 6%; Veillonella dispar 6%; Winkia neuii 2%	-
20.	-	- T
21.	Corynebacterium striatum 98%	ant2-Ia
22. 23.		-
23. 24.	Pseudomonas aeruginosa 100%	-
2 4 . 25.	Staphylococcus lugdunensis 60%; Finegoldia magna 39%	mecA; tetM
26.	Staphylococcus epidermidis 70%	-

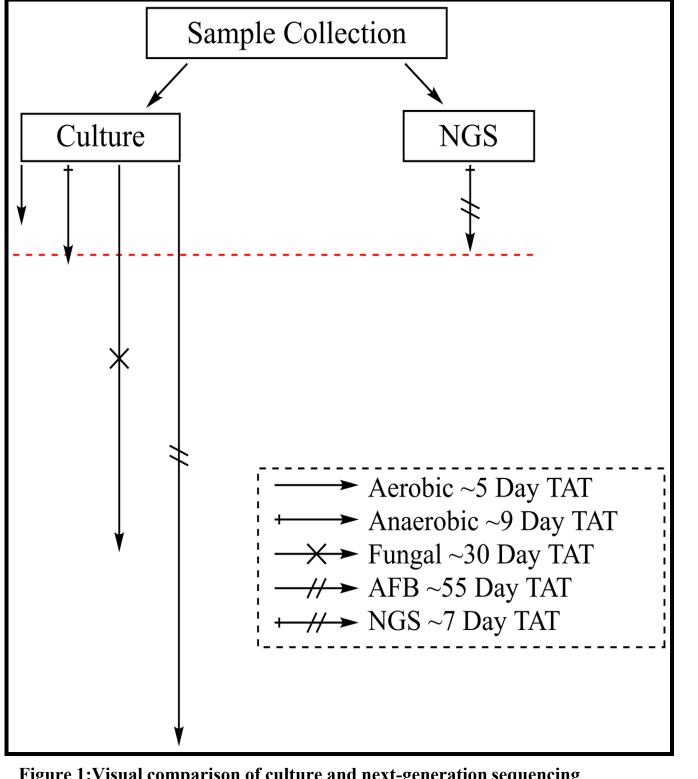


Figure 1:Visual comparison of culture and next-generation sequencing turnaround times, highlighting next-generation sequencing's timeliness in bypassing fungal and acid-fast bacilli wait times.

Results

-Mean (\bar{x}) , median (\tilde{x}) , and range (r) of TATs in days were as follows: aerobic $(\bar{x} = 4.8; \, \tilde{x} = 5; \, r = 3-7)$, anaerobic $(\bar{x} = 9.28; \, \tilde{x} = 7; \, r = 4-14)$, fungal $(\bar{x} = 29.9; \, \tilde{x} = 30; \, r = 29-31)$, AFB $(\bar{x} = 54.5; \, \tilde{x} = 57; \, r = 39-63)$, NGS collected-to-reported $(\bar{x} = 6.96; \, \tilde{x} = 6; \, r = 4-11)$, and NGS received-to-reported $(\bar{x} = 4.52; \, \tilde{x} = 5; \, r = 2-7)$.

-5/26 (19.2%) received negative NGS results and positive cultures, 6/26 (23.1%) received positive NGS results and negative cultures, 7/26 (26.9%) received negative NGS results and cultures, and 8/26 (30.8%) received positive NGS results and cultures.

-Within the last group, 1/8 (12.5%) had no agreement, 2/8 (25%) had full agreement, and 5/8 (62.5%) had partial agreement.

-Sending for NGS was 42.5% cheaper than ordering cultures at our institution (\$433 vs \$249).

-When an antibiotic susceptibility test (AST) is added, NGS becomes 56.8% cheaper (\$576 vs \$249).

Conclusion

-We recommend NGS as an informative, timely, and economical tool for use alongside culture-based detection in suspected or confirmed BSTIs.

-NGS may improve patient outcomes by bypassing fungal and AFB wait times and by providing identification when cultures are negative.

-NGS highlights rare and difficult-to-culture organisms in polymicrobial infections, the identities of which may be important in the setting of trauma or latent and recurring BSTIs.

References

Su S, Wang R, Zhou R, Bai J, Chen Z, Zhou F, Higher diagnostic value of next-generation sequencing versus culture in periprosthetic joint infection: A systematic review and meta-analysis. Knee Surg Sports Traumatol Arthrosc. 2002 Abgs 7, PMID: 3718471.

Cretu B, S, Cursam A, Serban B, Costache M, Cirstoiu C, Spiridonica R, Metagenomic Next-Generation Sequencing for Periprosthetic joint infection: a systematic review and meta-analysis. Knee Surg Sport Traumatol Arthrosc. 2002 Abgs 7, 1870-1870-1870.

Cretu B, S, Cursam A, Serban B, Costache M, Cirstoiu C, Spiridonica R, Metagenomic Next-Generation Sequencing for Periprosthetic joint infection: a systematic review and meta-analysis. Knee Surg Sport Traumatol Arthrosc. 2002 Sep;3 (19):3672-3683. doi: 10.1007/s00167-022-07196-9. Epub 2022 Oct 16. PMID: 36344018; PMCID: PMCID: PMCID: 4854641.

Jorge LS, Fucuta PS, Oliveira MGL, Nakazone MA, de Matos JA, Chucire AG, Salles MJC. Outcomes and Risk Factors for Polymicrobial Posttraumatic Osteomyelitis. J Bone Js. Infect. 2018 Feb 20;3(1):20-26. doi: 10.7150/jbj;2256c. PMID: 29545992; PMCID: PMCSS52844.

Jorge LS, Fucuta PS, Oliveira MGL, Nakazone MA, de Matos JA, Chucire AG, Salles MJC. Outcomes and Risk Factors for Polymicrobial Venterbard Osteomyelitis. J Bone Js. Infect. 2018 Feb 20;3(1):20-26. doi: 10.7150/jbj;2256c. PMID: 29545992; PMCID: PMCSS52844.

Jorge LS, Fucuta PS, Oliveira MGL, Nakazone MA, de Matos JA, Chucire AG, Salles MJC. Outcomes and Risk Factors for Polymicrobial Venterbard Osteomyelitis. J Bone Js. Infect. 2018 Feb 20;3(1):20-26. doi: 10.7150/jbj;2256c. PMID: 29545992; PMCID: PMCSS25244.

Jorge LS, Fucuta PS, Selwart T, Falson MA, Sahan N, Mease S, Sinha K, Hwang K, Emani A. Clinical Differences Between Monomerobial and Polymicrobial Venterbard Osteomyelitis. J Bone Js. Infect. 2018 Feb 20;3(1):20-26. doi: 10.106/jBS15.10450. PMID: 29002371.

Karolus JJ, Cunningham DJ, Rao SR, Wellman SS, Seyler TM. Polymicrobial Infections: Outcomes after, Increased Surgery, and Longer Hopatialization. J Arthroplas

Disclosures

-The authors have no relevant financial disclosures and industry support was not provided for this study.