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Methods

Searched PubMed for articles mentioning EHRs 
and terms related to automated cohort 
identification.

Phenotype-study combinations were identified 
for each study and filtered to those related to 
lung cancer.

Extracted demographic variables included: 
age, sex, gender, race, ethnicity, and ancestry 
where available.

Results
30 unique phenotype-study pairs were found in 
EHR studies that identify patients with lung 
cancer.
Of these, 12 (40%) reported any demographics of 
their algorithm-identified lung cancer 
populations.
Reporting frequency:

Sex was the most frequently reported 
demographic variable (n = 10), followed by 
age (n = 9), and race/ethnicity (n = 8). 
No algorithms reported gender identity and 
two algorithms reported genetic ancestry. 

Reporting variability:
Where reported, race/ethnicity had the 
most unique data labels (n = 23).
Age had the greatest variability in reporting 
techniques (n = 3).

Conclusions
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Introduction
Lung cancer is the leading cause of cancer-
related deaths in the United States. 

Screening and prevention guidelines are not 
historically developed on diverse populations.

Electronic health record (EHR) data and 
phenotyping algorithms are increasingly used to 
identify patients with disease.

It is unclear how well populations from EHR 
studies align with the known prevalence of 
disease.

Undetected misrepresentation from algorithm-
identified populations may propagate inequities 
in lung cancer research and policy.

While many studies acknowledge the 
importance of demographic data (e.g., age, sex, 
race), these same features are often omitted 
when describing the specific populations 
algorithms identify. 

Consequently, current reporting practices make 
it difficult to understand the generalizability of 
study results. 

These findings prompt a compelling need for 
standardized demographic reporting, which will 
amplify research impact through transparency 
and a greater ability to combat bias in lung 
cancer research and the clinical guidelines they 
inform.
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Studies Imported for Screening
(N = 11,913)

Duplicates Removed
(N = 326)

Records Screened
(N = 11,587)

Records Excluded
(N = 8,010)

Full Text Studies Assessed
(N = 3,577)

Studies Excluded
(N = 2,699)

Studies Included
(N = 878)

Exclusion Reason 
Applied Study – Used as Covariate (N = 26)
Phenotyping Used Only ICD Codes (N = 492)
Phenotype From Chart Review (N = 402)
Phenotyping From Cited Publication (N = 216)
Did Not Identify a Disease/Condition (N = 363)
Did not Identify a Patient Population (N = 268)
Did Not Use EHR Data (N = 131)
Outside United States (N = 721)
Not Original Research (N = 80)

Phenotype-Study 
Combinations Included

(N = 1,989)

Lung Cancer
Related Phenotype

(N = 37)

Fully Extracted (SRDR+) – No AIP Demographics Reported
(N = 7; from 3 studies)

Fully Extracted (SRDR+) – AIP Demographics Reported
(N = 1; from 1 studies)

Not Fully Extracted (Covidence Only) – Needed review to 
determine whether AIP reported

(N = 29; from 27 studies)

40%
Reported any 
demographic data

33%
Reported sex

27%
Reported race or

 ethnicity

7%
Reported genetic 

ancestry
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