

Introduction

- Socioeconomic status (SES) is a known factor influencing morbidity and mortality
- CDC's social vulnerability index (SVI) quantifies neighborhood-level vulnerability
- Although high SVI has been associated with adverse outcomes in trauma, CABG, and AAA repair, its impact on aortic arch surgery remains unknown
- It is predicted that in total aortic arch (TAR) and hemiarch aortic arch (HAR) replacement, higher SVI will correlate with increased comorbidities, surgical acuity, and post-operative morbidity and mortality

Methods

- The single center retrospective study examined adult patients undergoing HAR and TAR performed for aortic aneurysm and/or dissection between 2010 and 2022
- SVI was calculated by patients' residential ZIP code
- The cohort was stratified into three groups:
 - SVI < 0.33
 - SVI 0.33 0.66
 - SVI ≥ 0.66
- The primary endpoint was post-operative mortality, with control for confounding bias through multi-variable logistic regression

Impact of Social Vulnerability on Aortic Arch Surgery

Ananya Shah¹, Adam Carroll², Alejandro Suarez-Pierre², Jessica Rove³, Catherine Velopulos⁴, Muhamed Aftab³, T. Brett Reece³

¹University of Colorado School of Medicine; ²Department of Surgery, University of Colorado School of Medicine; ³Division of Cardiothoracic Surgery, University of Colorado Anschutz Medical Campus; ⁴Division of GI, Trauma, and Endocrine Surgery, University of Colorado Anschutz Medical Campus

Total arch replacement

Figure 1. Visual depiction of hemiarch vs partial arch vs total arch replacements

	SVI<0.33 (n=275)	SVI 0.33-0.66 (n=331)	SVI>=0.66 (n=147)	p-value
Pre-Operative Characteristics				
Age, years	62 [50, 70]	60 [51, 69]	60 [49, 68]	0.43
Race				<0.01*
White	233 (84.7)	262 (79.2)	86 (58.5)	
Hispanic	15 (5.5)	28 (8.5)	22 (15.0)	
Black	15 (5.5)	29 (8.8)	25 (17.0)	
Other	12 (4.4)	11 (3.3)	13 (8.8)	
Missing	0	1 (0.3)	1 (0.7)	
Comorbidities				
Dyslipidemia	100 (36.4)	93 (28.1)	52 (35.4)	0.07
Hypertension	185 (67.3)	213 (64.4)	112 (76.2)	0.04*
Smoking	62 (22.5)	84 (25.4)	46 (31.3)	0.15
Diabetes	19 (6.9)	26 (7.9)	20 (13.6)	0.05*
Renal disease	25 (9.1)	32 (9.7)	18 (12.2)	0.57
Peripheral vascular disease	7 (2.5)	3 (0.9)	10 (6.8)	<0.01*
Obesity	90 (32.7)	110 (33.2)	56 (38.1)	0.50
Stroke	24 (8.7)	24 (7.3)	9 (6.1)	0.60
Liver disease	4 (1.5)	8 (2.4)	2 (1.4)	0.60
Pulmonary disease	56 (20.4)	76 (23.0)	32 (21.8)	0.74
Coronary disease	32 (11.6)	44 (13.3)	19 (12.9)	0.82
Etiology				0.04*
Aneurysm	190 (69.1)	208 (62.8)	86 (58.5)	
Dissection	36 (13.1)	71 (21.5)	33 (22.4)	
Aneurysm and dissection	49 (17.8)	50 (15.1)	26 (17.7)	
Missing	0	2 (0.6)	2 (1.4)	

Table 1. Summary of pre-operative, operative, and post-operative outcomes for patients undergoing HAR or TAR stratified by SVI (with higher SVI denoting increased social vulnerability). All reported values are median [interquartile range]. Performed tests are Kruskal-Wallis rank sum for continuous variables and Chi-square test for categorial variables. * p < 0.05

Results

Opera Status

Proce

Adjun Bladd Cardi Cross Circul RBC (FFP th Platel Cryop

Post-C Unpla ICU c

Posto

Lengt ICU1 Posto Disch

Post-o

ive Characteristics				
ive Churacleristics				0.02*
Elective	197 (71.6)	198 (59.8)	85 (57.8)	0.02
Urgent	30 (10.9)	49 (14.8)	22 (15.0)	
Emergent	48 (17.5)	84 (25.4)	40 (27.2)	0.01÷
ure	(2, (22, 2))	00 (04 0)	CO /OZ 45	0.01*
Total arch	63 (22.9)	82 (24.8)	53 (36.1)	
Hemi arch	212 (77.1)	249 (75.2)	94 (63.9)	
tive non-aortic procedures	159 (57.8)	212 (64.0)	90 (61.2)	0.29
r nadir temperature, C	27.1 [25.6, 28.0]	26.8 [25.0, 27.9]	26.5 [24.0, 27.9]	0.01*
pulmonary bypass time, min	146 [119, 202]	154 [120, 212]	166 [133, 215]	0.02*
lamp time, min	97 [71, 132]	100 [74, 135]	100 [72, 139]	0.73
tory arrest time, min	11 [7, 22]	12 [8, 22]	15 [10, 25]	0.01*
ansfused, units	1 [0, 4]	1 [0, 4]	2 [0.00, 4]	0.45
ansfused, units	3 [0, 6]	4 [0, 6]	4 [2, 6]	0.03*
is transfused, units	2 [0, 2]	2 [0, 3]	2 [1, 3]	0.03*
ecipitate transfused, units	0 [0, 0]	0 [0, 0]	0 [0, 0]	0.84
verative Outcomes				
ned Reoperation Needed				0.56
No	246 (89.5)	281 (84.9)	126 (85.7)	
Yes	27 (9.8)	47 (14.2)	20 (13.6)	
mplications	11.77.05	10 /5 75	0.72.15	0.50
New renal replacement therapy	3 (1 1)	19 (5.7)	9 (6.1)	0.53
Spinal cord injury Cerebrovascular injury	3 (1.1) 20 (7.3)	3 (0.9) 34 (10.3)	1 (0.7) 21 (14.3)	0.07
Delirium	27 (9.8)	43 (13.0)	17 (11.6)	0.48
Seizure	8 (2.9)	5 (1.5)	5 (3.4)	0.36
Extended mechanical ventilation	22 (8.0)	36 (10.9)	15 (10.2)	0.48
Infection	16 (5.8)	31 (9.4)	22 (15.0)	0.01*
Mesenteric ischemia	2 (0.7)	2 (0.6)	0	0.60
Myocardial infarction	2 (0.7)	3 (0.9)	0	0.52
erative transfusion, Y/N				
None	91 (33.1)	92 (27.8)	37 (25.2)	0.18
RBC	76 (27.6)	102 (30.8)	49 (33.3)	0.45
Platelets	55 (20.0)	78 (23.6)	35 (23.8)	0.51
FFP	57 (20.7)	75 (22.7)	38 (25.9)	0.49
of stay, days	7 [6, 11]	8 [7, 13]	9 [7, 13]	<0.01*
ngth of stay, days	3 [2, 5]	3 [2, 6]	4 [2, 6]	0.05*
erative in-hospital mortality	16 (5.8)	29 (8.8)	11 (7.5)	0.39
rge disposition	212 /77 5	226 (71 2)	106 (72-1)	0.54
Home ACR	213 (77.5)	236 (71.3)	106 (72.1)	
SNF	12 (4.4) 17 (6.2)	25 (7.6) 20 (6.0)	7 (4.8) 13 (8.8)	
LTAC	4 (1.5)	7 (2.1)	6 (4.1)	
OSH	6 (2.2)	6 (1.8)	2 (1.4)	
Home with home health	7 (2.5)	8 (2.4)	2 (1.4)	
In-hospital death	16 (5.8)	29 (8.8)	11 (7.5)	
ischarge death (within one year)	\$117X	< <i>y</i>	V2	0.28
No	226 (82.2)	268 (81.0)	123 (83.7)	

Discussion

- For 753 patients, higher SVI correlated with more baseline comorbidities and minority status
- SVI was associated with dissection pathology (p=0.04) and urgent/emergent procedures (p=0.02)
- Higher SVI was associated with TAR (p=0.01) as reflected by lower nadir bladder temperatures (p=0.01), longer cardiopulmonary bypass (p=0.02), longer circulatory arrest times (p=0.01), and more coagulation product usage
- High SVI patients had longer length of stay, higher rates of infection (p=0.01), and a trend towards increased stroke risk
- SVI did not correlate with in-hospital or late mortality

Conclusions

- In socially vulnerable communities, patients who require aortic arch surgery have more comorbidities, present urgently or emergently with dissection pathology, and require more extensive arch repair
- Post-procedure, they have a higher risk of infection and a trend toward more stroke risk, but not higher rates of other adverse outcomes or increased mortality during or after hospital stay