Spatiotemporal Analysis of the Impact of Homeless Encampment Sweeps on Crime in Denver, CO, 2019-2023

¹University of Colorado School of Medicine, Department of Medicine, Division of General Internal Medicine Funding: National Institute on Drug Abuse (DP2DA051864)

Background

- >580,000 people experience homelessness nightly in the US
- Many cities have "camping bans" to address unsheltered homelessness
- Denver's camping ban went into effect on May 28, 2012
- Bans are enforced by "sweeps" of encampments
- Sweeps cited as necessary for "public health and safety"
- Limited evidence that sweeps are effective in reducing crime

Objective

To assess the spatiotemporal relationship between homeless encampment sweeps and area crime.

Methods

DATA SOURCES

- Crime data from Denver police
 - 196/day on average
 - Attributes: date/time, location, category (n=13)
- Sweep data from city of Denver
 - n=303
 - Attributes: date, location

STUDY DESIGN

- Pre-post ecological study
- Knox test statistic (κ) to detect excess spatiotemporal clustering
- 4 catchment areas: 0.25 mi, 0.5 mi, 0.75 mi, citywide
- 3 time periods: 7, 14, 21 days
- 95% confidence interval (95% CI) created via bootstrapping

OUTCOMES

- Primary
 - 1 Δ crimes: change in crime (crimes_{post} crimes_{pre})
- Secondary
 - 2 crimes_{pre}: average number of crimes before sweeps
 - 3 crimes_{post}: average number of crimes after sweeps

Citywide, encampment "sweeps" are not associated with decreases in crime

FINDING 1: CRIME DOES NOT GENERALLY I

• No change beyond 0.25 miles

FINDING 2: CRIME IS GENERALLY HIGH IN PERIODS BEFORE A SWEEP

FINDING 3: CRIME GENERALLY REMAINS HIGH AFTER A SWEEP

Pranav Padmanabhan, BS¹, Samantha K. Nall, MPH¹, Cole Jurecka, MPH¹, Joshua A. Barocas, MD¹

School of Medicine UNIVERSITY OF COLORADO NSCHUTZ MEDICAL CAMPUS

Results

DECR	EASE AF	TER A	SWEEP
	Observed difference	Expected null (95% CI)	p-value
	<mark>-1.31</mark>	(-0.54, 0.68)	<.001
	<mark>-1.54</mark>	(-0.74, 1.15)	<.001
ficant	<mark>-1.56</mark>	(-0.81, 1.87)	.002
	<mark>-1.62</mark>	(-1.15, 1.33)	.007
	0.05	(-1.07, 3.21)	.35
	0.53	(-0.92, 4.99)	.32
	-0.13	(-1.28, 2.05)	.54
	2.89	(-0.69, 5.38)	.72
	2.11	(0.27, 8.00)	.30

	Observed # of crimes	Expected null (95% CI)	p-value	
	<mark>14.1</mark>	(12.4, 13.4)	<.001	
	<mark>27.7</mark>	(24.8, 26.6)	<.001	
lificant	<mark>40.5</mark>	(36.9, 39.1)	<.001	
	<mark>54.8</mark>	(51.5, 53.7)	<.001	
	<mark>107.9</mark>	(102.4, 106.0)	<.001	
	<mark>159.5</mark>	(152.1, 157.1)	<.001	
	<mark>110.9</mark>	(107.7, 110.7)	.02	
	219.0	(213.9, 219.3)	.08	
⊢•	<mark>325.9</mark>	(317.7, 324.4)	.004	
)				

	Observed # of crimes	Expected null (95% CI)	p-value	
	12.8	(12.5, 13.5)	.37	
hificant	26.1	(25.0, 26.9)	.65	
	38.9	(37.3, 39.8)	.53	
	53.2	(51.6, 53.7)	.37	
	<mark>108.0</mark>	(103.2, 107.4)	.01	
	<mark>160.1</mark>	(153.8, 159.4)	.01	
	110.8	(108.0, 111.1)	.14	
	<mark>221.9</mark>	(216.1, 221.8)	.04	
H	328.0	(321.1, 329.3)	.18	
)				

Change in crime after sweeps, citywide				
	Change in crimes (Δcrimes) per sweep	Expected change per sweep (95% CI)	p-value	
7 days	-5.32	(-9.97, 11.42)	.27	
14 days	3.44	(-13.27, 27.09)	.74	
21 days	10.32	(-4.04, 40.61)	.49	

Change in crime after sweeps, by crime category

*Result reported if significance holds at 2/3 time periods within a certain dist

- Hyperlocal decrease in crime primarily driven by auto theft and public disorder
- Significant increase in murder and other crimes against persons (primarily simple assault and domestic violence) at certain distance and time combinations

Conclusion

- Sweeps are **reactive to crime**; they occur when crime is spiking locally
- Sweeps do not prevent crime; spatiotemporal clustering of crime remains higher than expected near swept areas in postsweep periods
 - Sweeps are not an effective solution for crime
 - Hyperlocal decreases in crime after sweeps are temporary
 - Decreases are driven by less serious crimes, while more serious types of crimes increase
 - Some crime is diffused outward rather than curtailed outright
 - Sweeps exacerbate cycles of violence against people experiencing homelessness, increasing their risk of overdose, injury, and victimization