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= Motifs carry important information about the underlying dynamics just as De-
oxyribonucleic acid (DNA) carries genetic information.
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Figure 4. 3 best discords in each class

series subseqguences.
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* |dentify anomalies (discords) using SAX Architecture of SAX and Lookup table PvC 47 51 0.3953 0.0084 i
= Classify & compare heart disorder ECG signals using LSTM and SAX AFIB 130 30 0.2677 0.0087 A -s.-»-'J ~ 'J v, ~A J —)
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= Study data: Data was obtained from the MIT-BIH Arrhythmia database, con-
sisting of 1000, 10-s (3600 non overlapping samples) ECG fragments (360 Hz) : : . : ;

Figure 5. Weighted pattern plot

of 45 patients. It has 17/ classes; 15 heart disorders a normal sinus pacemaker e 52 0.43 0(2)7 8225
rhythm with at least 10 fragments for each. gi : 0.84 Conclusions and Limitations

Classes Fragments Patients Filtering method Figure 2. PAA & Character assignment (6] Table 3. Breakpoints Lookup table [3] . . .
Total 17 1000 A5 Class Median Low-pass Wavelet ' = The results of SAX classification shows a good performance with low errors.
Used 17 904 39 APB 00648 01531 0.0003 = Distance measure and position of best discord depict huge discrepancies be-
Males| 58%  Females  42% AFIB 0.0527 0.1217 0.0003 SAX word and sliding window tvvé@ﬁ eafzh disqrder and NSR- | |
Age 32-89  vears Table 2. Filtering method & MSE . | — | = This hlghhg.h.ts dlﬁerencgs in the ECG signals and suggest the presence of varying
e T Data descring The breakpoints used to assign a,b,c in Figure 1 is Table 1. heart conditions as was initially planned.
aple 1. alta description .
’ The breakpoints a.'”erCh that o = au, ..., a1 and for a; to a;y, the area under = Similar location of best discords and equal distance measures would have meant
the N(0,1) curve is 2 | . all the ECG are the same.
Data processing M”.\ID|5T calculates SAX distance between yvords. Flor a word abc, " WOU'.d be = LSTM does not factor in position of best discord in its computation so lower
assigned to PAA terms between «a; and as with area 5 = 0.33, where § = 2 points. ccuracies were obtained
SAX: LSTM: |

Y] = eeg eegiefgseffeghyeegeefg; . .. &Y, = eeg efgeff,eghseegqefg; . .. = The challenge of these algorithms is the non-existence of prior knowledge about

1. Filtering (median, low-pass & wavelet) the precise positions of these patterns.

2. Apply filter with lowest MSE
3. Perform feature selection
4. Implement LSTM

5. Compute accuracy

1. z-normalization.
2. PAA reduction

3. Find & implement SAX with optimal
pDarameters

4. |dentify discords & plot
5. Compute classification errors

Y] reduced to Y5 hence, reducing computational cost. Equation 1 then produces
weights of words present in each class based on frequencies with which each word
OCCUTS.

= The use of exhaustive search approaches lead to very high computational cost

= A small subsequence length leads to identifying too many patterns which may
not necessarily be significant. Longer length sequences may also miss key pat-
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