

Identification of Heart Disorders Using Symbolic Aggregate Approximation (SAX)

Background

- Anomaly (irregular pattern) detection has gained much traction for its vast applications. Data is represented to reduce dimension but keep key information [5].
- Time series motifs are repeated patterns across a time series. Their similarity casts doubts on their occurrence being random.
- Motifs carry important information about the underlying dynamics just as Deoxyribonucleic acid (DNA) carries genetic information.
- These patterns appear with different frequencies, lengths, lags, and disparities across an entire series [2]. Time series discord refer to the most unusual time series subsequences.

Objectives

- Identify anomalies (discords) using SAX
- Classify & compare heart disorder ECG signals using LSTM and SAX

Methods

• Study data: Data was obtained from the MIT-BIH Arrhythmia database, consisting of 1000, 10-s (3600 non overlapping samples) ECG fragments (360 Hz) of 45 patients. It has 17 classes; 15 heart disorders a normal sinus pacemaker rhythm with at least 10 fragments for each.

	Classes	Fragments	Patients		Filte
Total	17	1000	45	Class	Med
Used	12	904	39	APB	0.06
Males	58%	Females	42%	AFIB	0.05
Age	32 - 89	years			

Table 1. Data description

SAX:

- 1. z-normalization.
- 2. PAA reduction
- 3. Find & implement SAX with optimal parameters
- 4. Identify discords & plot
- 5. Compute classification errors

Piecewise Aggregate Approximation (PAA)

$$z_i = \frac{x_i - \mu}{\sigma} \qquad i = 1, 2, \dots m$$

$$\bar{X}_i = \frac{m}{n} \cdot \sum_{j=\frac{n}{m}(i-1)+1}^{(n/m).i} x_j$$

 z_i = normalized x_i μ = mean of X σ = standard deviation of X $X_n \approx X_m$ where $m \leq n$ m = length of Xn = length of **X**

dian Low-pass Wavelet 648 0.1 527 0.1

Table 2. Filtering method & MSE

LSTM:

Data processing

- 1. Filtering (median, low-pass & wavelet)
- 2. Apply filter with lowest MSE
- 3. Perform feature selection
- 4. Implement LSTM
- 5. Compute accuracy

Moses Owusu

School of Public Health, Anschutz Medical Campus

PAA with different sizes

1. PAA with different parameters Figure

Architecture of SAX and Lookup table

SAX word and sliding window

The breakpoints used to assign a,b,c in Figure 1 is Table 1. The breakpoints are such that $\alpha = \alpha_1, \ldots, \alpha_{\beta-1}$ and for α_i to α_{i+1} , the area under the N(0,1) curve is $\frac{1}{\alpha}$

MINDIST calculates SAX distance between words. For a word *abc*, "*a*" would be assigned to PAA terms between α_1 and α_2 with area $\frac{1}{3} = 0.33$, where $\beta = 2$ points.

 $Y_1 = eeg_1 eeg_2 efg_3 eff_4 egh_5 eeg_6 efg_7 \dots \approx Y_2 = eeg_1 efg_3 eff_4 egh_5 eeg_6 efg_7 \dots$

 Y_1 reduced to Y_2 hence, reducing computational cost. Equation 1 then produces weights of words present in each class based on frequencies with which each word occurs.

Term Frequency - Inverse Document Frequency (TFIDF)

$$\mathsf{tf}_{t,d} = \begin{cases} \log(1+f_{t,d}), & \text{if } f_{t,d} > 0 \\ 0, & \text{otherwise} \end{cases} \quad \begin{array}{l} \mathsf{ff}_{t,d} \\ \mathsf{idf}_{t,d} \\ \mathsf{N}_{t,d} \\ \mathsf{N}_{t,d}$$

the tf * idf for t in the bag d of D set of bags is given as:

$$tf * idf(t, d, D) = tf_{t,d} \times idf_{t,D}tf * idf(t, d, D) = \log(1 + f_{t,d})$$

SAX for ECG

ering method

v pass	vavcici
1531	0.0003
1217	0.0003

 $MINDIST(\hat{Q}, \hat{C}) \equiv \sqrt{\frac{n}{w}} \left| \sum_{i=1}^{w} (dist(\hat{q}_i, \hat{c}_i))^2 \right|$ β / α 3 -0.43 -0.67 -0.84 -0.25 0.43 β_2 ()0.67 0.25 β_3 0.84 β_4

 Table 3. Breakpoints Lookup table [3]

- frequency of t in d
- term frequency
- inverse tf
- word bags cardinality
- total number of classes
- df_t bags in which t occurs

	words	bag
1	aaaaaaaaaccccccccceeeeeeeee	0.00
2	aaaaaaaaaeeeeeeeeeccccccccc	0.28
3	aaaaaaaaaeeeeeeeeeeccccccccc	0.00
4	bbbbbbbbbbbeeeeeeeeeaaaaaaaaaaa	0.76
5	bbbbbbbbbbbbeeeeeeeeaaaaaaaaaaaa	0.00
6	cccccccceeeeeeeeeaaaaaaadd	0.28
7	ddddddddaaaaaaaaddddddddd	0.56
8	dddddddddddddddaaaaaaaaa	1.52
9	eeeeeeeeeaaaaaaaaaacccccccccc	0.28
10	eeeeeeeeeecccccccccaaaaaaaada	0.76

Figure 3. TFIDF output

Class	n	Misclass	error
NSR	82	-	_
APB	45	45	0.3543
SVTA	5	34	0.3864
PVC	47	51	0.3953
AFIB	30	30	0.2679

Table 4. SAX classification error

Conclusions and Limitations

- tween each disorder and NSR.
- heart conditions as was initially planned.
- all the ECG are the same.
- accuracies were obtained.
- the precise positions of these patterns.
- terns.
- [1] Lena Biel, Ola Pettersson, Lennart Philipson, and Peter Wide. Ecg analysis: a new approach in human identification. IEEE transactions on instrumentation and measurement, 50(3):808–812, 2001.
- [2] Tian Huang, Yongxin Zhu, Yafei Wu, and Weiwei Shi.
- [3] Jessica Lin, Eamonn Keogh, Li Wei, and Stefano Lonardi. Experiencing sax: a novel symbolic representation of time series. Data Mining and knowledge discovery, 15:107–144, 2007.
- [4] Abdullah Mueen. Time series motif discovery: dimensions and applications.

Figure 5. Weighted pattern plot

• The results of SAX classification shows a good performance with low errors.

• Distance measure and position of best discord depict huge discrepancies be-

This highlights differences in the ECG signals and suggest the presence of varying

• Similar location of best discords and equal distance measures would have meant

• LSTM does not factor in position of best discord in its computation so lower

• The challenge of these algorithms is the non-existence of prior knowledge about

• The use of exhaustive search approaches lead to very high computational cost • A small subsequence length leads to identifying too many patterns which may not necessarily be significant. Longer length sequences may also miss key pat-

References

J-distance discord: an improved time series discord definition and discovery method.

In 2015 IEEE International Conference on Data Mining Workshop (ICDMW), pages 303–310. IEEE, 2015.

Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 4(2):152–159, 2014.

Department of Biostatistics & Informatics