Perinatal Acetaminophen Toxicity is Mediated by Cytochrome P450 2E1 (CYP2E1) In a Time and Cell-Type Specific Manner

Emma M. Golden; Lijun Zheng; Maya R. Grayck; Zhouwei Li; Nicola Tlaba; David McCulley, MD*; Clyde J. Wright, MD*
Section of Neonatology Department of Pediatrics Email: emma.golden@cuanschutz.edu

INTRODUCTION

Acetaminophen (APAP) exposures occur in 50-60% of pregnancies in the US and is concerning associated with childhood respiratory morbidity. The mechanism behind this remains unknown.

Most of APAP can be metabolized through glucuronidation or sulfation pathways, producing non-toxic metabolites that can be excreted. These pathways can become overloaded. Cellular toxicity of APAP is dependent on its conversion by Cyp2e1 into the mitochondrial toxin NAPQI, resulting in oxidative stress.

In adults, pericentral hepatocytes express highest levels of Cyp2e1 making these liver cells highly susceptible to NAPQI injury. However, fetal hepatic Cyp2e1 expression is low. Rather, Lung Map data show that in the developing murine lung, prenatal pulmonary Cyp2e1 expression peaks during the saccular stage (E17.5-P4) and is limited to the myofibroblast.

This study sought to confirm preliminary data on Cyp2e1 expression and to interrogate the impact of APAP on the developing fetal lung.

HYPOTHESIS

We hypothesize this peak in Cyp2e1 expression predicts susceptibility to APAP-induced lung injury during this critical developmental period.

METHODS

Murine model: C57BL/6
Murine dam treatments:
- APAP dose: 250mg/kg IP; 6hr on E18
Outcome Measures:
- mRNA expression was evaluated by qPCR for Il6, Mmp9, Gclc, Hmo1, Nqo1, Trp53, Puma, Noxa
- RNA isolated from lungs of WT mice from E12-P7 and assessed for Cyp2e1 expression by Western Blot
- Cyp2e1 expression in Pdgfrα-GFP labeled pulmonary myofibroblasts was compared to Cyp2e1 expression in all other lung cell types.
- Statistical analysis was performed by t-test using GraphPad prism

RESULTS

Fig 1a: Cyp2e1 Expression from lungs of WT Mice

Fig 1b: Cyp2e1 Expression in Pdgfra-GFP Cells

Fig 1c: APAP exposure induces Cyp2e1 on E18

Fig 2a: APAP exposure induces inflammatory gene expression on E18

Fig 2b: APAP exposure induces apoptotic gene expression on E18

CONCLUSION

We demonstrated that pulmonary Cyp2e1 expression is timing and cell-type specific, peaking at E18 and limited to the mesenchymal myofibroblast.

We also found that a non-lethal dose of APAP resulted in upregulation of expression of genes associated with antioxidant response elements, apoptosis, and inflammation.

Continued work is needed to determine whether perinatal APAP exposure has detrimental effects on the developing lung, its function, and the role of pulmonary Cyp2e1 in this mechanism of lung injury.