

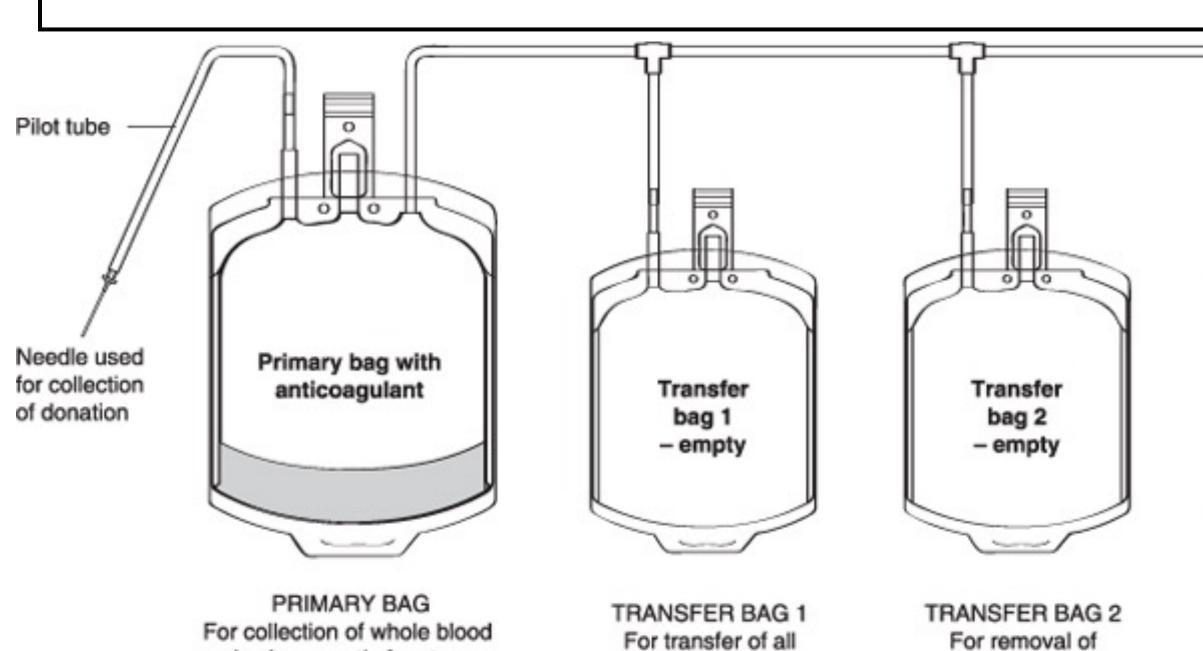
University of Colorado Anschutz Medical Campus

Narrative Review of Strategies for Blood Product Shelf-Life Extension

Mike Akaraphanth^{1,2}, Jessica Oudakker^{1,2}, Matthew Paulson, MD^{2,3}, Todd Getz, PhD^{2,4}

¹University of Colorado School of Medicine, Aurora, Colorado; ²University of Colorado Center for COMBAT Research, University of Colorado School of Medicine, Aurora, Colorado; ³Denver Health Medical Center, Denver, Colorado; ⁴59th Medical Wing, JBSA Lackland, Texas

BACKGROUND


- Over 90% of survivable US battlefield fataliti (2001-2011) were due to severe hemorrhage, highlighting prehospital blood transfusion's cr role.
- Anticipating rising demand in resource-limi settings during future conflicts, our review explores innovative methods to extend bloo product shelf-life for austere environments.

OBJECTIVES

Reviewed various methods that prolonged th shelf-life of blood components, specifically examining the impact of additives, anticoagu deoxygenation/anaerobic storage, cryopreservation/lyophilization of red blood and variable temperature cycling/thermal hol procedures, and assessed their practical appli in resource-limited environments.

METHODS

We performed a literature review spanning f 1959 to 2023 by searching PubMed and government regulation documents using a combination of several keywords. Additional pertinent studies were identified by crossreferencing primary articles. Clinical experie each author was also considered.

	RESULTS						
s	Current U.S. Blood Produc				ossible crease	Storage Parameters	
ed	Additive Solutions* (RBCs)		42 days		56 days		1-6°C
	Anticoagulants* (WB)		21 or 35 days		35 days		1-6°C
	Deoxygenation/ Anaerobic Storage* (DAS) (RBCs)		NA		56 days		1-6°C*
; ;	Cryopreservation (RBCs)		10 years		In Efficiency		≤ -65°C (-80°C)
ants,	Category	Tecl	hnique	Findir	ıg	Utility in	Austere Setting
ells, ling ation	Additive Solutions: (RBCs)	O "Ad Solutio (AS-7)	on 7	 O +14 days storage. O 24hrs Room temp hold prior. 		 O Longer storage duration = less restocking of forward bases. O Allows better logistics and planning. 	
m	Anticoagulants: (WB)	 O Mixing FWB/EWB O Ascorbic, Nicotinic acid 		 O Preserves clotting firmness + time. O Higher 2,3 -DPG, less hemolysis. 		 O Decrease strain in Walking Blood Banks. O Cheap implementation and lasts for 3 years of storage. 	
nce of	Deoxygenation/ Anaerobic Storage: (RBCs)	O Ar/He gas for deoxygenation and storage		O +14 days storage.		• Optimized cost, potential for less resupply. Can apply to platelets or plasma.	
	Variable Temperature Cycling/Thermal Holding: (WB)	 Transient exposure to RT Specialized Containers 		 O No change in cellular quality or hemolysis rates. 		 O Power failure will not harm blood supply. O Allows for cheaper refrigeration. 	
Additive solution BAG WITH	Cryopreservation /Lyophilization: (RBCs)	 OClosed Loop O Autologous O Trehalose loading 		• Needs 1.5 hrs. to deglycerolize & thaw		 O Possible increase in efficiency for deglycerolizing. O None for Lyophilization 	

CONCLUSIONS/DISCUSSION

- collections to storage.
- containers.

The opinions expressed in this poster presentation are those of the authors and do not reflect the official policy or position of the US Army Medical Department, Department of the Army, Department of Defense, or the US Government. The authors declare no conflicts of interest associated with this research.

ACKNOWLEDGEMENTS

We would like to thank the esteemed leadership and faculty at the University of Colorado, CU Anschutz Center for Combat Medicine and Battlefield Research.

• Certain applications may be financially cost prohibited or unsafe for widespread far forward use (Autologous cryopreservation, DAS w/ Pd catalyst) while other techniques would be easier to implement (AS-7, nicotinic/ascorbic acid). • Certain applications can be role specific to sub specific situations; AS-7 for forward blood

Optimized techniques exists to increase efficiency of blood storage duration including mixing FWB/EWB and mobile sealed

LIMITATIONS

Some methods reviewed (lyophilization of RBC) currently lacked clinical data. • Given Narrative Review application, hard to infer the potential net effects with combination of methods (e.g., AS-7 w/ DAS).

DISCLAIMERS