Lysine Demethylase 4B (KDM4B): A Novel Epigenetic Target in Atypical Teratoid/Rhabdoid Tumor (ATRT).

Emily Jue Wang (M.D. program, SOM), Irina Alimova, Sujatha Venkataraman, Rajeev Vibhakar, Morgan Adams Foundation Pediatric Brain Tumor Research Program, Aurora, CO, USA

Atypical teratoid/rhabdoid tumor (ATRT) is a highly aggressive childhood brain tumor; current treatment options are limited with intensive chemotherapy and radiation which often create therapy-related toxicity; this is especially critical in this young patient population. Previous studies reported the loss of SMARCBI, a member of ATP-dependent SWI/SNF chromatin remodeling complex, is the hallmark molecular feature of ATRT, creating an overall epigenetic dysregulation of ATRT genome. This marks a potential avenue in the search for targeted therapy.

Epigenetic remodeling and transcription

Study Questions

1) Examine KDM4B’s (or KDM family genes) biological relevance in driving/maintaining the growth of ATRT cells
2) Determine mechanisms behind KDM4B function:
 - how does KDM4B loss alter histone markers, chromatin remodeling and transcription
3) Can we use KDM4B as a potential therapeutic target?

Background: Atypical Teratoid/Rhabdoid Tumor (ATRT)

- Malignant central nervous system tumor in children
- 5-year survival of 35%
- Current therapy regimen: surgery, intensive chemo, radiation
- Salient molecular characterization: loss of SMARCBI gene
- Loss of function SWI/SNF chromatin complex and epigenetic dysregulation
- Different subgroups: TYR, SHH, MYC with various methylation patterns

What we learned so far

1) Examine KDM4B’s (or KDM family genes) biological relevance in driving/maintaining the growth of ATRT cells
 - KDM4B loss engenders decrease in ATRT tumor cell viability
 - KDM4B is differentially expressed at baseline in tumor cells and patient tumor samples vs control
 - Potential therapeutic window

2) Determine mechanisms behind KDM4B function:
 - KDM4B loss leads to global upregulation of H3K9Me3 expression
 - More heterochromatin/global suppression of genome

3) Can we use KDM4B as a potential therapeutic target?
 - Pharmacologic inhibition of KDM4B using small molecule tool compound differentially suppressed tumor cells without toxicity to normal human astrocytes and fibroblasts
 - IC50 not ideal, need better chemical inhibitor

Next steps/Future Directions

- Integrated H3K9Me3 Chromatin immunoprecipitation (ChIP) sequencing and RNA sequencing shKDM4B knockdown vs control cells analysis
- Identify pathways mediated by KDM4B
- KDM4B ChIP sequencing to explore its occupancy at promoters, enhancers and super enhancers in ATRT genome
- Enhance our understanding in its role in ATRT genome
- Elucidate role of KDM4B on chromatin remodeling
- Obtain novel KDM4B inhibitor and optimize for translational potential
- Test potential combination therapies
- Animal studies/preclinical testing

Acknowledgements

Thank you to Dr. Vibhakar’s lab and the Pediatric Neur-oncology group for their continued support and mentorship. The Department of Pediatrics for the support of this project and CU School of Medicine Research Scholarship for supporting my time doing research. Special thanks to the Research Track. Dr. Allan V. Pecquet and Zachary Lumquist.