Visual and somatosensory cross-modal reorganization in children with cochlear implants

Theresa Hennesya, Garrett Cardonb, Julia Campbellc, Hannah Glickd, Don Bell-Souderd, and Anu Sharmad*

aUniversity of Colorado School of Medicine, Aurora, CO 80045, USA
bCommunication Disorders Department, Brigham Young University, Provo, UT 84604, USA
cDepartment of Speech Language and Hearing Sciences, University of Texas at Austin, Austin, TX 78712, USA
dDepartment of Speech Language and Hearing Sciences, University of Colorado, Boulder, CO 80305, USA

Background

- Cross-modal reorganization occurs when a deprived sensory modality’s cortical resources are recruited by other intact modalities.
- Cross-modal reorganization has been proposed as a source of variability underlying speech perception in hearing-impaired cochlear implant (CI) users \cite{1,2}.
- Visual and somatosensory cross-modal reorganization of auditory cortex has been documented separately in children with CIs \cite{3,4}, but reorganization in these modalities has not been documented within the same subject group.

Aim of the study

- To examine cross-modal reorganization across visual and somatosensory modalities within a single group of CI children (n=10) using high-density electroencephalography.

Methods

- Analyzed evoked potentials in response to visual and somatosensory stimuli \cite{5,6}.
- Performed current density reconstruction (CDR) of brain activity sources \cite{7-11}.
- Performed speech perception-in-noise testing \cite{12,13}.
- CDR patterns were analyzed within the entire subject group and across groups of CI children exhibiting good vs. poor speech perception \cite{13}.

Results: Waveform analysis

- Results: Current density reconstruction

Methods:

- Analyzed evoked potentials in response to visual and somatosensory stimuli \cite{5,6}.
- Performed current density reconstruction (CDR) of brain activity sources \cite{7-11}.
- Performed speech perception-in-noise testing \cite{12,13}.

Results: Waveform analysis (cont.)

- Results: Waveform latency and amplitude analysis

Discussion

- Cross-modal reorganization of auditory cortex by visual and sensory modalities
- Positive correlation between visual and somatosensory cross-modal reorganization, suggesting that neuroplasticity in different sensory systems may be interrelated.
- CI children with good speech perception did not show recruitment of frontal or auditory cortices during visual processing, while subjects with poor speech perception did.
- Findings reflect widespread changes in cortical networks in CI children that may relate to functional performance.

References

Figure 1. CVEP grand average waveforms in the occipital and R temporal ROIs in children with CIs (n=10). Each waveform shows all CVEP waveform components of interest including P1, N1, and P2.

Figure 2. CSEP grand average waveforms in L parietal and R temporal ROIs in children with CIs (n=10). Each waveform shows all CSEP waveform components of interest including P50, N70, P100, N140a, and N140b.

Figure 3 (upper left): CDR images illustrating cortical activation underlying CVEP peak components P1, N1, and P2 on sagittal MRI slices in children with CIs (n=10).

Figure 4 (upper right): CDR images illustrating cortical activation underlying CVEP peak components P1, N1, and P2 on sagittal MRI slices in children with CIs (n=10).

Figure 5 (upper): CDR images illustrating cortical activation underlying CSEP peak components P50, N70, P100, and N140 on coronal MRI slices in children with CIs (n=10).

Figure 5 (right): CDR images illustrating cortical activation underlying CVEP peak components P1, N1, and P2 on sagittal MRI slices in CI children with good speech perception (left panel; n=5, mean BKB-SIN score 3.9 dB SNR, mean age 10.7) and poor speech perception (right panel; n=5, mean BKB-SIN score 11.3 dB SNR, mean age 10.5).

Figure 6. Scatter plot illustrating the correlation between BKB-SIN score and CVEP N1 latency in the right temporal ROI in children with CIs (n=10).

Figure 7. Scatter plot illustrating the correlation between BKB-SIN score and CSEP P50 latency in the right temporal ROI in children with CIs (n=10).

Figure 8. Scatter plot illustrating the correlation between CSEP 140a latency and CVEP N1 latency in the right temporal ROI in children with CIs (n=10).

Disclosure: The authors declare no conflicts of interest.

Funding: This project was funded by National Institutes of Health grants R01HL13010945, R01DC006257, T32DC012280, F31DC01970, F31DC013218.