

Gene Therapy and Subsequent Deep Brain Stimulation for Parkinson's Disease

Yaswanth Chintaluru BS¹, John A Thompson PhD¹, Pamela David Gerecht PhD¹, Steven Ojemann MD¹, Drew S Kern MD MS¹ ¹University of Colorado School of Medicine

Background

Parkinson's Disease

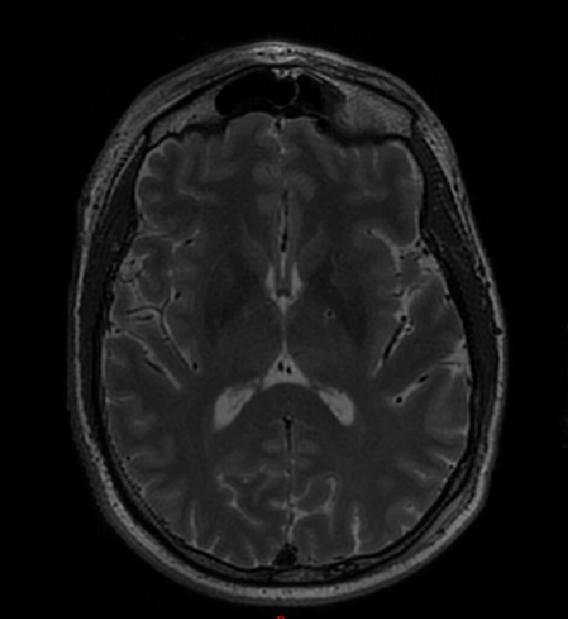
- Parkinson's disease (PD) is the second most common neurodegenerative disorder affecting the elderly population
- Characterized by tremor, rigidity, akinesia, bradykinesia, postural instability
- Pathologic: Neuronal degeneration of dopaminergic cells, Lewy bodies and neurites
- Treatment involves dopamine replacement therapy, surgical intervention, and gene therapy

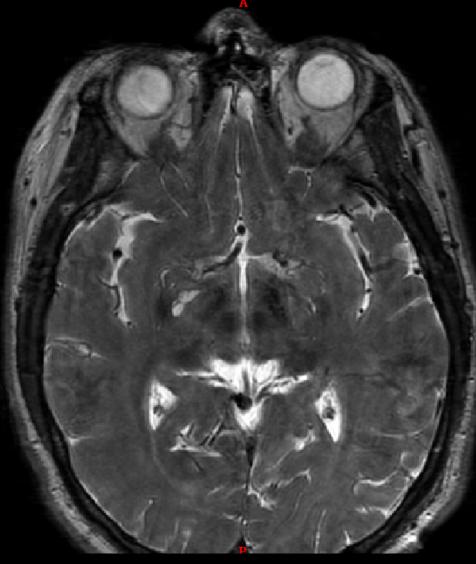
GAD gene Therapy

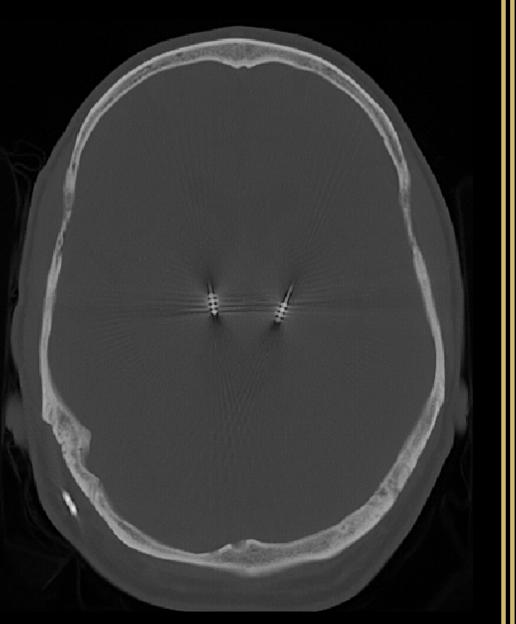
- > Introducing glutamic acid decarboxylase (GAD) through via adeno-associated virus (AAV)
- > STN hyperactivity in PD creates toxic levels of glutamate

GAD catalyzes synthesis of GABA, which decreases hyperactivity of the STN

Deep Brain Stimulation


- Placement of electrodes into a targeted region of the brain
- > The subthalamic nucleus (STN) is a common target in DBS
- Stimulation is adjustable for contacts and other variables


Objectives


- Both dopamine replacement therapy and DBS address the physiological symptoms of PD
- > We studied the outcomes of patients who initially had GAD treatment and subsequently underwent DBS
- Largest cohort of GAD+DBS patients to date

Methods

Figure 1: Surgical Neuro-imaging

Pre-treatment

Post-GAD Cannula

Post DBS

Surgical Treatment

- Five (of 11) patients received GAD bilaterally in the STN
- All patients received bilateral DBS electrode implantation in the STN
- 3-, 6-, and 12-months post GAD and DBS surgery **LEDD** (Levodopa equivalent dose) & UPDRS (Unified Parkinson's Disease Rating Scale) were collected

Results (cont.)

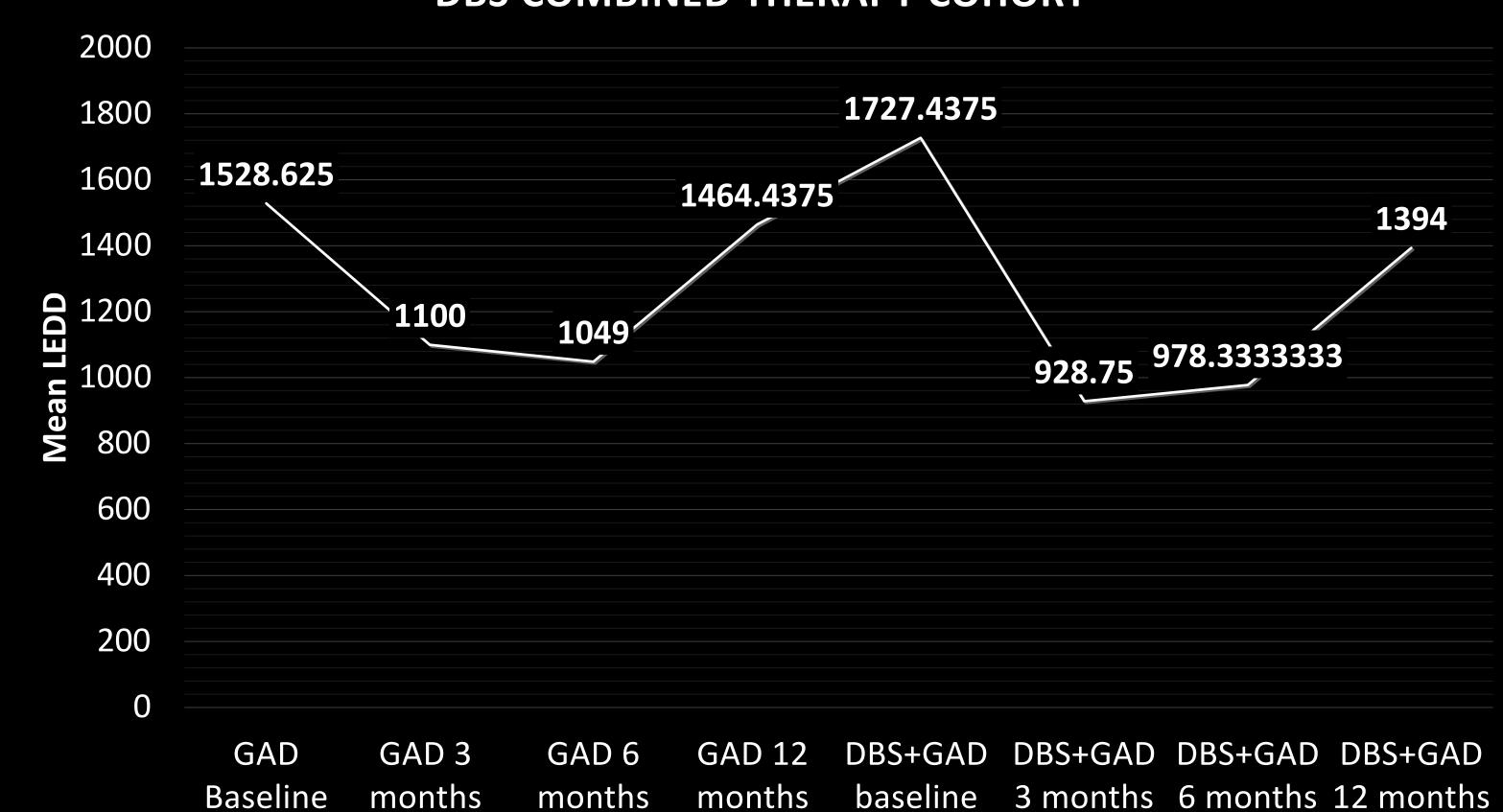
Table 1: Descriptive Statistics of GAD LEDD Data

Descriptive Statistics						
	GAD Baseline	GAD 3 months	GAD 6 months	GAD 12 months		
Valid	4	1	4	4		
Missing	0	3	0	0		
Mean	1529	1100	1049	1464		
Std. Deviation	421.9	NaN	364.1	504.0		
Minimum	1192	1100	532.0	1000		
Maximum	2075	1100	1380	2175		

Table 2: Descriptive Statistics of GAD and DBS LEDD Data

Descriptive Statistics ▼						
	DBS+GAD baseline	DBS+GAD 3 months	DBS+GAD 6 months	DBS+GAD 12 months		
Valid	4	4	3	4		
Missing	0	0	1	0		
Mean	1727	928.8	978.3	1394		
Std. Deviation	615.1	504.0	674.7	1331		
Minimum	1000	465.0	500.0	500.0		
Maximum	2275	1575	1750	3375		

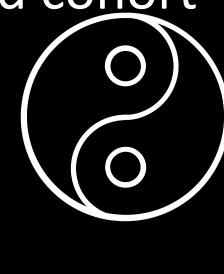
Results show that mean patient LEDD dose values were significantly lower (p<.05) at 3- and 6-months post DBS(t -test)


Table 3: Descriptive Statistics of GAD and DBS of UPDRS Data

Descriptive Statistics						
	UPDRS DBS +GAD baseline	UPDRS DBS +GAD 3mo	UPDRS DBS +GAD 6mo	UPDRS DBS +GAD 12mo		
Valid	4	4	5	5		
Missing	1	1	0	0		
Mean	25.25	22.25	19.00	23.40		
Std. Deviation	10.59	5.188	7.176	10.62		
Minimum	14.00	15.00	9.000	15.00		
Maximum	39.00	26.00	25.00	40.00		

UPDRS motor scores were significantly lower at 6 months post DBS (p<.05) (t-test)

Results


FIGURE 2: MEAN LEDD (LEVODOPA EQUIVALENT DOSES) GAD + **DBS COMBINED THERAPY COHORT**

Troughs in mean LEDD values at 3-and 6-month timepoints in both GAD and GAD+DBS cohorts

Looking Forward

- > ANOVA analysis on UPDRS and LEDD data
 - > At baseline and 3,6,12-month follow up
- > Further analysis of neuroimaging data will reveal GAD volume of coverage/infused within targets
- > Compare findings with DBS only matched cohort
- Positive outcomes in patients who received both treatment modalities signify the treatments are compatible <u>togethe</u>r

References

Rossi, A., Berger, K., Chen, H., Leslie, D., Mailman, R. B., & Huang, X. (2018). Projection of the prevalence of Parkinson's disease in the coming decades: Revisited. Movement Disorders, 33(1), 156-159. doi:10.1002/mds.27063