Evaluation of Risk Factors associated with Development of Catheter-associated Venous Thromboembolism in Pediatric ICU Patients

Matthew Wong, MS4¹, Ryan Good, MD^{1,2}, John Kim, MD^{1,2}

¹University of Colorado School of Medicine, ²Department of Pediatrics – Critical Care Medicine, University of Colorado

Background

- Central venous lines (CVL) are a major risk factor for the development of Venous thromboembolisms (VTEs) in pedatric patients
- Other factors previously found to have increased risk of VTE in pediatric patients include age under 1 year, usage of mechanical ventilation, recent surgery, and a primary diagnosis category of an oncologic, cardiac, or hematologic cause
- Pediatric patients requiring an ICU level of care often have a necessity for a CVL such as a CVC, PICC, or hemodialysis catheter
- Identification of additional factors associated with a higher risk of developing catheter-associated VTE (CA-VTE) will aid in increased identification of patients at higher risk of developing CA-VTE, allowing for increased vigilance of clinical signs of VTE in these patients

Objective

To identify factors, if any, that increase a pediatric patient with a CVL's risk of developing a CA-VTE

Methods

- Retrospective chart review of all patients at the CHCO PICU from 1/1/2016 to 12/31/2020
- Patients included who had a PICC, CVC, or hemodialysis catheter placed by either the PICU or a CHCO surgical team during their PICU admission, and who had a radiology-reviewed ultrasound of the extremity with the CVL
- Ultrasound must have been performed between time of CVL placement up to three days after removal of the line
- Patients with multiple CVLs and assessment of multiple limbs for CA-VTE were treated as multiple cases, with each possible CA-VTE counting as one case
- VTE was determined by positive diagnosis on formal radiology read of ultrasound

Results

- Patient Population: 210 cases from 169 patients were found to meet study criteria
- Univariate analyses was run for factors related to the clinical characteristics of the study population, as well as characteristics of the CVL itself

Demographic Variable	No CA-VTE	CA-VTE
# Patients,	112	98
Age in years (range)	0.06-17.99	0.18-17.66
Weight, kg (range)	3.8-106.9	3.22-151.0
Male sex (%)	59.82%	50.0%
Race (%)		
White	45.54%	48.98%
Black or African American	1.79%	3.06%
Asian	3.57%	1.02%
Hispanic/Latino	24.11%	24.49%
Native Hawaiian or other Pacific Islander	1.79%	1.02%
American Indian or Alaska Native	2.68%	0%
Mixed/Other	10.71%	11.22%
Unspecified	9.82%	10.2%

Characteristic		CA-VTE Univariate Analysis							
		No	Yes	Total	Relative Risk	95%	Sig	NNT (Harm)	Z stat
CVL Type									
	PICC	50	42	92	1.00				
	CVC	54	53	107	1.08	.81-1.46	.5831	25.77	0.544
	Hemodialysis/ plasmapheresis Catheter	8	3	11	.597	.22-1.61	.3080	5.441	1.019
CVL Location									
	Femoral	48	47	95	1.00				
	IJV	9	7	16	.8846	.49-1.6	.6838	17.47	.407
	Subclavian	4	3	7	.86	.36-2.08	.748	15.114	.32
	Brachial	17	11	28	.794	.48-1.31	.3692	9.815	.898
	Cephalic	2	4	6	1.35	.74-2.46	.3309	5.816	.972
	Basilic	31	26	57	.922	.65-1.3	.6481	25.9	.456
	Other	1	0	1					
Number of Lumens									
	1	17	13	30	.85	.55-1.32	.4661	13.03	.729
	2	73	76	149	1.00				
	3	22	9	31	.569	.32-1.01	.0537	4.551	1.93
CVL Duration (days)									
	0-7	52	62	114	1.00				
	8-14	17	20	37	.994	.70-1.4	.972	301.28	.035
	15-21	9	9	18	.919	.56-1.5	.737	22.8	.335
	22 and up	7	34	41	1.53	1.22-1.89	.0001	3.504	3.79

Significant Findings

- The clinical characteristics of: primary diagnosis category of malignancy (RR 1.74, 95% CI 1.18-2.55), and primary diagnosis category of trauma (RR 1.47, 95% CI 1.01-2.15) caused a statistically significant increase in the risk of developing CA-VTE
- The CVL characteristic of CVL duration greater than 22 days was associated with a statistically significant increase (RR 1.53, 95% CI 1.22-1.89) in risk of development of CA-VTE.

Condon	Characteristic				Univariate Analysis				
Gender		No	Yes	Total	RR	95% CI	Sig	NNT (Harm)	Z stat
	Female	45	49	94	1.23	0.93- 1.65	P = 0.1521	10.12	1.432
	Male	67	49	116	1.00				
History of VTE	Yes	4	4	8	1.07	0.53- 2.18	P = 0.8425	28.86	0.199
	No	108	94	202	1.00				
Surgery within 24 hrs o	of Line Placement								
	Yes	20	18	38	1.02	.70-1.48	P= 0.9233	116.71	.096
	No	92	80	172	1.00				
Primary Diagnosis Cate		2	0	12	1 74	1 10	D- 0 0050	2 4 4 7	2 704
	Malignancy	3	9	12	1.74	1.18- 2.55	P= 0.0052		2.794
	Infection Trauma	28 8	14	22	1.02 1.47	0.69- 1.48 1.01-	P= 0.9255 P =	128.26 4.898	0.093 2.008
	Hematologic	6	2	8	0.58	2.15 0.17-	0.0446 P =	4.898 5.488	.881
	Other	67	51	118	1.00	1.96	0.3783	3.400	.001
History of Congenital F		07	31	110	1.00				
Thistory of Congenitari		4-	1.0	24	4.40	77.4.64	5 0 5044	17.000	524
	Yes	15	16	31	1.13	.77-1.64	P= 0.5344	17.233	.621
	No	97	82	179	1.00				
Interventions within 24 placement	4 nrs of CVL								
Transfusion (Any blood products)	Yes	61	41	102	0.76	.567- 1.02	P = 0.0718	7.948	1.801
	No	51	57	108	1.00				
TPN	Yes	32	25	57	0.92	.656- 1.29	P= 0.6247	25.955	.489
	No	80	73	153	1.00				
Use of Vasoactive Medications	Yes	68	54	122	0.89	.66-1.18	P= .4078	17.429	.828
	No	44	44	88	1.00				
Anticoagulation	Yes	45	35	80	0.90	0.67- 1.23	P= 0.5113	21.224	.657
	No	67	63	130	1.00				
Mechanical Ventilation	Yes	98	86	184	1.01	.65-1.58	P= 0.9555	170.86	0.056
	No	14	12	26	1.00				
Plasmapheresis	Yes	8	8	16	1.08	.65-1.80	P= 0.7747	27.714	0.286
	No	104	90	194	1.00				
CVVHD	Yes	16	7	23	0.6254	.33-1.18	P= 0.1475	5.486	1.448
		96	91	187	1.00				

Conclusions

Placement of a central venous line (CVL) is a major risk factor for the development of VTE in children. Increased duration of catheter placement and primary conditions of oncologic and traumatic nature were found to have increased risk of Identifying additional risk factors that further increase this risk can aid in decreasing the rate of CA-VTE in critically ill children.

Future Plans

 This project is intended to continue with a plan for analysis of the measures of catheter-to-vein ratio (CVR) against catheter-to-vein difference (CVD) as predictors of the development of CA-VTE for pediatric patients, as CVR was developed as a predictor for adult patients, and CVD is a newer measure that has not been assessed as robustly as CVR.

References

- 'Central venous line-related thrombosis in children: association with central venous line location and insertion technique', Male C et al. Blood. 2003;101(11):4273-4278.
- 2. 'Intravascular Complications of Central Venous Catheterization by Insertion Site', Parienti JJ et al. New England Journal of Medicine. 2015;373(13):1220-1229.
- 3. 'Identification of a "VTE-rich" population in pediatrics Critically ill children with central venous catheters', Tran M et al. Thrombosis Research. 2018;161(1):73-77.
- 4. 'Incidence and risk factors associated with venous thrombotic events in pediatric intensive care unit patients', Higgerson RA et al. Pediatric Critical Care Medicine. 2011;12(6):628-634.
- 5. 'Which central venous catheters have the highest rate of catheter-associated deep venous thrombosis: a prospective analysis of 2,128 catheter days in the surgical intensive care unit', Malinoski D et al. Journal of
- Trauma and Acute Care Surgery. 2013;74(2):454-462.

 6. 'Characterization of central venous catheter-associated deep venous thrombosis in infants', Gray BW et al.
- Journal of Pediatric Surgery. 2012;47(6):1159-1166.
 7. 'Central Venous Catheter-related Deep Vein thrombosis in the Pediatric Cardiac Intensive Care Unit', Steen
- EH et al. The Journal of Surgical Research. 2019;241(1):149-159.

 8. 'Incidence and risk factors of catheter-related deep vein thrombosis in a pediatric intensive care unit: a
- prospective study', Beck C et al. The Journal of Pediatrics. 1998;133(2):237-241.
- 9. 'Central venous catheter-related thrombosis', Geerts, W. New Paradigms in Anticoagulation and Thrombolysis. 2014 (1):306-311.
- 10. 'Peripherally inserted central venous catheters and central venous catheters related thrombosis in post-critical patients', Bonizzoli M, et al. Intensive Care Medicine. 2011;37(1):284-289.
- 11. 'Central venous lines in critically ill children: Thrombosis but not infection is site dependent', Derderian SC, et
- al. Journal of Pediatric Surgery. 2019;54(9):1740-1743.

 12. 'Peripherally Inserted Central Catheter (PICC)-related Thrombosis in Critically III Patients'. Zochios V et al. The
- Journal of Vascular Access. 2014;15(5):329-337.
- 13. 'Routine surveillance ultrasound for the management of central venous catheters in neonates', Haddad H, et al. The Journal of Pediatrics. 2014;164(1):118-122.
- 14. 'Complications of femoral and subclavian venous catherization in critically ill patients: a randomized controlled trial', Merrer J et al. Journal of the American Medical Association. 2001;286(6):700-707.
- 15. 'Risk Factors for Upper Extremity Venous Thrombosis Associated with Peripherally Inserted Central Venous Catheters'. Marnejon T et al. The Journal of Vascular Access. 2012;13(2):231-238.
- 16. 'Predictive Risk Factors of Venous Thromboembolism (VTE) associated with peripherally inserted central catheters (PICC) in ambulant solid cancer patients: retrospective single Centre cohort study', Al-Asadi O, et
- 17. 'Hemodialysis Catheter-related Central Venous Thrombosis: Clinical Approach to Evaluation and
- Management', Gunawansa N et al. Annals of Vascular Surgery. 2018; 51(1):298-305. 18. 'Intravenous catheter', Evans NS, et al. Vascular Medicine. 2018;23(4):411-413.
- 19. Sharp R, Cummings M, Fielder A, Mikocka-Walus A, Grech C, Esterman A. The catheter to vein ratio and rates of symptomatic venous thromboembolism in patients with a peripherally inserted central catheter (PICC): a prospective cohort study. *Int J Nurs Stud*. 2015;52(3):677-685. doi:10.1016/j.ijnurstu.2014.12.002
- 20. Schmidt B, Andrew M. Neonatal thrombosis: report of a prospective Canadian and international registry. *Pediatrics*. 1995;96(5 Pt 1):939-943.

Acknowledgements

I would like to thank my mentors Dr. John Kim and Dr. Ryan Good, as well as Dr. Cecilia Low Wang, for their guidance and kindness during this project.