Intermittent Inhalations of Concentrated Oxygen have a Transient Effect on Blood Oxygen Saturation at Very High Altitude: An Observational Study

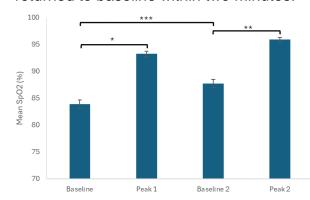
Solomon Sindelar; Brian M Strickland, MD

University of Colorado School of Medicine, Aurora, CO

Background

- Canned oxygen products are widely available for consumer purchase and are often marketed towards individuals recreating at high altitude.
- Continuous oxygen supplementation is a wellestablished prevention and treatment for altitude-related illness.
- Little investigation has been done to evaluate any physiologic effect of intermittent inhalations of oxygen on individuals at altitude.

Objective


 To assess the physiological response to short bursts of inhaled oxygen among individuals recreating at high altitude.

Methods

- Observational cohort study investigating 50 individuals recreating at an altitude of 4307m (14,131ft)
- Baseline and peak SpO2 levels were recorded as participants self-administered 1 and 3stacked breaths of canned 95% oxygen.
- Paired t-test analyses were completed to compare baseline vs peak SpO2.

Results

- Mean baseline oxygen saturation at rest was 83.9% (SD 5.52).
- Both 1 and 3 breaths resulted in an increase in blood oxygen saturation (mean absolute increase 9.3% and 8.2%, respectively).
- There was no difference between the magnitude of change in SpO2 following one vs three breaths (p=0.11).
- Mean time to peak SpO2 was 65.4s (SD 28.1).
- Following peak, SpO2 showed an immediate downtrend, and 17 individuals (34%) fully returned to baseline within two minutes.

Figure 1 Mean SpO2 (%) at baseline, peak 1 following 1 breath, baseline 2, and peak 2 following 3 stacked breaths. Error bars represent standard error of the mean and stars indicate statistical difference.

Conclusions

- Intermittent administration of concentrated oxygen resulted in a significant increase in blood oxygen saturation among healthy individuals at altitude.
- There was no difference between the magnitude of change following 1 vs 3 breaths.
- This rise in oxygen saturation is transient and not sustained.
- The transient nature of this effect suggests little clinical benefit of intermittent oxygen to counteract the health effects of high-altitude hypoxemia. More research is needed to characterize the therapeutic significance of this physiologic change.

References

- Dünnwald T, Kienast R, Niederseer D, Burtscher M. The Use of Pulse Oximetry in the Assessment of Acclimatization to High Altitude. Sensors (Basel). 2021;21(4):1263. doi:10.3390/s21041263
- Forrer A, Gaisl T, Sevik A, et al. Partial Pressure of Arterial Oxygen in Healthy Adults at High Altitudes: A Systematic Review and Meta-Analysis. JAMA Netw Open. 2023;6(6). doi:10.1001/jamanetworkopen.2023.18036
- Auerbach P, Cushing T, Harris NS. Auerbach's Wilderness Medicine. 7th Edition. Elsevier; 2016
- Lenfant C, Torrance JD, Reynafarje C. Shift of the O2-Hb Dissociation Curve at Altitude: Mechanism and Effect. J Appl Physiol. 1971;30(5):625-31. doi:10.1152/jappl.1971.30.5.625

*No Conflicts of Interest to Disclose