

Effects of Cognitive-Behavioral Therapy for Insomnia Compared with Controls Among Cancer Survivors: A Systematic Review and Meta-analysis of Randomized Trials

Joshua T. Cooper, BS; Ellie Svoboda, MLIS, AHIP; Allan V. Prochazka, MD, MSc; Duc M. Ha, MD, MAS

Results

Background

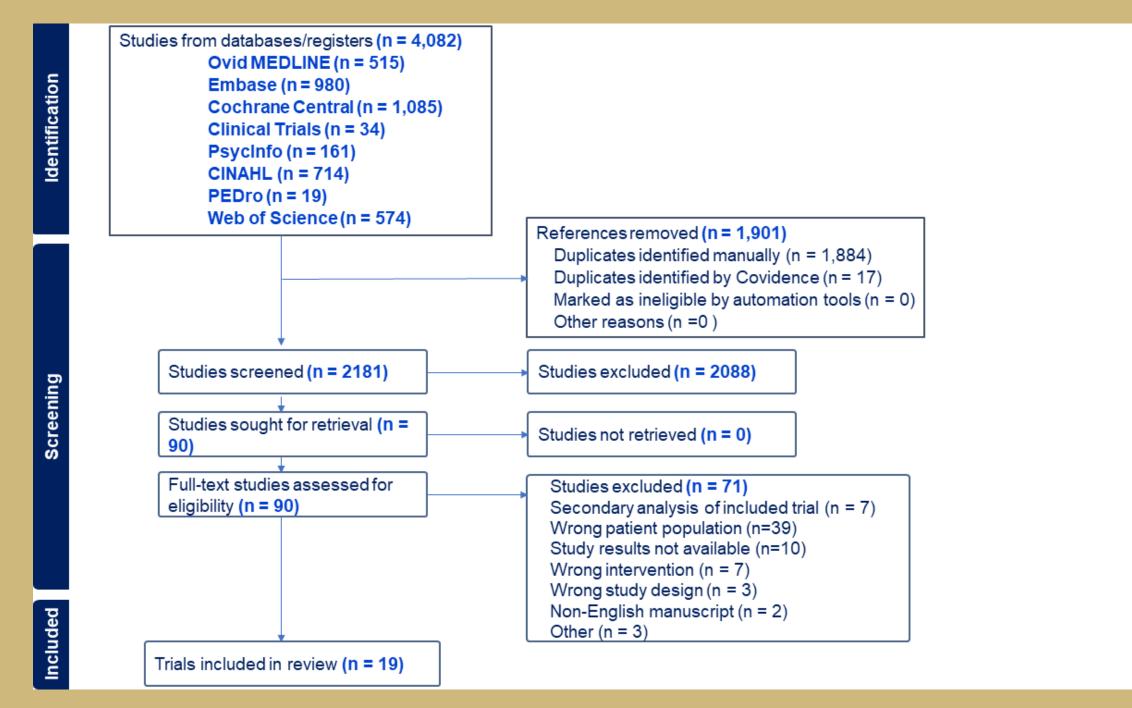
- Insomnia is highly prevalent among cancer survivors (up to 70%)¹
- Insomnia in cancer survivors has complex biological, behavioral, physiological, psychological, and treatment-related causes².
- Insomnia can lead to daytime fatigue, social and cognitive dysfunction, and impaired healthrelated quality of life (HRQL)3.
- CBT-I is the recommended first-line non-pharmacological treatment for insomnia⁴.
- Prior meta-analyses focused on within-group changes, with calls to better evaluate treatment effects compared to controls^{5,6}.

CONTACT

Joshua Cooper University of Colorado School of Medicine

Email: Joshua.Cooper@Cuanschutz.edu

Objectives


• To conduct a systemic-review and meta-analysis and evaluate the effects of cognitive-behavioral therapy for insomnia (CBT-I) among cancer survivors, compared with controls, on insomnia.

Methods

- Comprehensively searched 8
 databases (CINAHL/ClinicalTrials.gov/
 Cochrane
 Central/Embase/MEDLINE/PEDro/Psyc
 hInfo/Web of Science)
- Included randomized controlled trials (RCTs) in which adult cancer survivors with clinically-significant insomnia were randomized to CBT-I or control conditions.
- Primary outcome: end-of-intervention Insomnia Severity Index (ISI).
- Secondary outcomes: sleep diary parameters, fatigue, and health-related quality of life (HRQL).
- Analyzed between-group mean differences (MD's), standardizedmean-differences (SMD's), and interpreted results using guidelineendorsed, minimal clinically important difference (MCID) or SMD thresholds.

- Included 19 RCTs involving 1,803 participants.
- Participant mean age was 55 and timesince-diagnosis was 2.5 years; 95% were women, mostly survivors of breast cancer.
- At end-of-intervention, compared with controls, CBT-I improved ISI [MD (95% CI): -4.4 (-5.3, -3.5) points; that did not reach the MCID threshold (i.e., ≥6 points), but is higher than half of the minimal-important-change (i.e., 3-<6 points, including 95% CI), suggesting that an appreciable number but not many patients derived clinically-important benefit.
- Subjective sleep diary sleep latency, wake after sleep onset, sleep efficiency, fatigue, and HRQL were also improved; however, on average, none of the improvements reached their respective MCID or SMD thresholds to suggest that many patients derived clinicallyimportant benefits.
- In pre-specified subgroup analyses, no intervention or cancer-related characteristics meaningfully changed results. Evidence certainty was low-to-very-low, primarily due to heterogeneity, performance, publication, and/or reporting bias.

Results

Study or Subgroup	Intervention			Control			Mean difference		Mean difference	
	Mean [points]	SD [points]	Total	Mean [points]	SD [points]	Total	Weight	IV, Random, 95% CI	IV, Randon	n, 95% CI
Casault 2015	5.32	2.93	17	11.31	5.52	18	5.2%	-5.99 [-8.90 , -3.08]		
Dean 2020	6.94	5.27	16	15.07	4.42	14	4.2%	-8.13 [-11.60 , -4.66]		
Dirksen 2008	14.38	5.31	34	16.31	5.03	38	6.3%	-1.93 [-4.33, 0.47]		
Gonzalez 2022	7.8	3.75	15	13.33	6.69	14	3.5%	-5.53 [-9.52 , -1.54]		
Hall 2022	9.34	4.2	19	15	4.2	19	5.7%	-5.66 [-8.33 , -2.99]		
Matthews 2014	9.03	4.38	30	11.37	4.38	26	6.5%	-2.34 [-4.64 , -0.04]		
Palesh 2018	9.5	5.1	34	11.5	6.7	37	5.5%	-2.00 [-4.76, 0.76]		
Palesh 2020	8.185	6.1	31	10.916	6.1	33	5.0%	-2.73 [-5.72 , 0.26]		
Ritterband 2012	8.2	3.97	13	14.4	3.85	13	5.0%	-6.20 [-9.21 , -3.19]		
Roscoe 2015	5.61	4.58	18	10.47	4.58	19	5.1%	-4.86 [-7.81 , -1.91]		
Savard 2005	7.57	5.25	27	13.7	5.09	30	5.6%	-6.13 [-8.82 , -3.44]		
Savard 2014	5.9	4.4	70	11.2	4.35	77	9.0%	-5.30 [-6.72 , -3.88]	-	
Savard 2016	8.3	4.43	57	11.2	4.35	77	8.7%	-2.90 [-4.41 , -1.39]		
Zachariae 2018	7.1	4.4	103	12.8	5.3	100	9.2%	-5.70 [-7.04 , -4.36]	-	
Zhang 2019	10.82	5.68	31	15.42	5.9	33	5.3%	-4.60 [-7.44 , -1.76]		
Zhao 2020	12.65	2.86	65	15.48	2.93	67	10.2%	-2.83 [-3.82 , -1.84]	-	
Total (95% CI)			580			615	100.0%	-4.37 [-5.26 , -3.49]	•	
Heterogeneity: Tau ² =	1.74; Chi² = 38.4	49, df = 15 (P =	0.0008)	; I ² = 61%						
Test for overall effect: Test for subgroup diffe	•							Favour	-10 -5 0 rs [experimental]	5 10 Favours [contr

CONCLUSIONS

Compared with controls, CBT-I improved insomnia among an appreciable number but not many cancer survivors. Strategies are needed to improve insomnia for many cancer survivors, particularly among non-responders to first-line CBT-I.

REFERENCES

- 1. E. C. Harrold *et al.*, "Prevalence of Insomnia in an Oncology Patient Population: An Irish Tertiary Referral Center Experience," (in eng), *J Natl Compr Canc Netw,* vol. 18, no. 12, pp. 1623-1630, Dec 2020, doi: 10.6004/jnccn.2020.7611.
- M. I. Clara, M. C. Canavarro, M. Miller-Mendes, and A. A. Gomes, "Insomnia in cancer survivors: A precision behavioral sleep medicine approach," *European Psychologist*, vol. 28, no. 2, pp. 110-121, 2023, doi: 10.1027/1016-9040/a000506.
- 3. S. N. Garland, H. Ivers, and J. Savard, "Prospective Rates, Longitudinal Associations, and Factors Associated With Comorbid Insomnia Symptoms and Perceived Cognitive Impairment," (in eng), *Front Neurosci*, vol. 15, p. 817933, 2021, doi: 10.3380 (fring 2021, 817032)

Sleep Medicine clinical practice guideline," (in eng), J Clin Sleep Med, vol. 17, no. 2, pp. 255-262, Feb 1 2021, doi:

- Insomnia Symptoms and Perceived Cognitive Impairment," (in eng), Front Neurosci, vol. 15, p. 817933, 2021, doi: 10.3389/fnins.2021.817933.

 4. J. D. Edinger *et al.*, "Behavioral and psychological treatments for chronic insomnia disorder in adults: an American Academy of
- J. A. Johnson *et al.*, "A systematic review and meta-analysis of randomized controlled trials of cognitive behavior therapy for

insomnia (CBT-I) in cancer survivors," (in eng), Sleep Med Rev, vol. 27, pp. 20-8, Jun 2016, doi: 10.1016/j.smrv.2015.07.001.

6. L. R. Squires, J. A. Rash, J. Fawcett, and S. N. Garland, "Systematic review and meta-analysis of cognitive-behavioural therapy for insomnia on subjective and actigraphy-measured sleep and comorbid symptoms in cancer survivors," (in eng), Sleep Med Rev, vol. 63, p. 101615, Feb 25 2022, doi: 10.1016/j.smrv.2022.101615.