

Advanced Vessel- and Cell-Size MRI to Assess Chemo-Radiation Treatment Response in Pediatric Ependymoma Models

JS Song, JL Steiner, D Niemann, AM Griesinger, AM Pierce, MS Brown, NK Foreman, NJ Serkova Department of Radiology, Anschutz Medical Campus

BACKGROUND

- Ependymoma (EPN) is an aggressive pediatric brain tumor
- After radiation therapy and surgery, EPN recurs in 23-66% of patients. Benefits of chemotherapy are not well defined.
- EPN is characterized by high tumor cellularity, cytological anaplasia, high mitotic index, tumor necrosis, and inflammatory cells such as M2-type myeloid cells.

OBJECTIVE

To develop and optimize an advanced mpMRI protocol to characterize the phenotype and chemo-radiation treatment (CRT) response in an orthotopic mouse of patient-derived xenografts (PDX) of pediatric EPN.

METHODS

Mouse Models:

- •Female severe immunodeficient mice (n=22)
- •CRT group (10 Gy radiation plus 30 mg/kg 3-fluorouracil) (n=6)

MRI protocol:

- High resolution T2w turboRARE (sagittal and axial) for tumor volume
- Diffusion weighted imaging (DWI) for tumor necrosis, edema, and selective size imaging
- Quantitative T2maps (qT2) (before and 24hr after ferumoxytol injection) and vessel size imaging (VSI) modeling

Analysis:

Analysis performed in ParaVision NEO Software and in house MATLAB simulations.

RESULTS

BASELINE

- All EPN PDX were inoculated in the correct location: cerebellum
- Median Tumor Volume: 21±12 mm³
- Increased Blood Vessel Densities: Q=0.54±0.12
- ADC values low at 0.67x10⁻³ mm²/s

EARLY RESPONSE TO TREATMENT

- Appreciated as early as 2 days after CRT
- Decreased blood vessel density

LATE RESPONSE TO TREATMENT

- Appreciated 2 weeks after CRT
- Decrease in tumor volume: mean 12.24 mm³ to 4.05 mm³ (P<0.01)
- Increased ADC values from 0.67 to 1.25 (P=0.01)
- Decreased fitted cellularity: 8.5x10³ to 5.2x10³ mm⁻²
- Decreased SSIFT iAUC from 7.1 to 4.2 (P=0.001)

A = Baseline

B = 2 days post CRT

C = 2 weeks post CRT

Increased presence of inflammatory macrophages and microglial cells

ADC and Blood Vessel Density Index

Q = 0.51

Baseline 5/14/2021

CONCLUSIONS & IMPLICATIONS

- PFA2 vs PFB)
- Our PDX models closely mimic histological features, anatomical location and radiological features of the primary tumors
- Early response to CRT: Significant decrease in vasculature and increase in inflammatory cells
- Late response to CRT: Decreased cellularity and cell shrinkage.

1.Merchant TE. Current Challenges in Childhood Ependymoma: A Focused Review. J Clin Oncol. 2017;35: 2364-2369. 2.Timmermann B, Kortmann RD, Kuhl J, et al. Role of radiotherapy in anaplastic ependymoma in children underage of 3 years: results of the prospective German brain tumor trials HIT-SKK 87 and 92. Radiother Oncol. 2005;77: 278-285. 3.Byer L, Kline CN, Colmean C, Allen IE, Whitaker E, Mueller S. A systematic review and meta-analysis of outcomes in pediatric, recurrent ependymoma. J Neurooncol. 2019;144: 445-452. 4.Pierce AM, Witt DA, Donson AM, et al. Establishment of patient-derived orthotopic xenograft model of 1q+ posterior fossa group A ependymoma. Neuro Oncol. 2019;21: 1540-1551.

subjects.

Dr. Natalie J. Serkova, University of Colorado Cancer Center Grant P30, NIH R01, Shared Instrumentation Grants, St Baldrick Foundation, Michele Plachy-Rubin **Brain Tumor Foundation**

• Limitation: current focus is on one type of EPN (PFA1 vs

• Future studies will further characterize the pathology of these models and investigate the response of PDX EPN to other treatment modalities.

REFERENCES

DISCLOSURES

The authors have no financial affiliations or relationships. There was no off-label use of pharmaceuticals in human

ACKNOWLEDGEMENTS