Drive-Through Efficiency: How to Prepare for and Execute a Mass-Vaccination Event

Michael D. Skaggs MS¹, Daniel Resnick-Ault MD MBA^{1,2}, Sarah K. Wendel MD MBA^{1,2}, Sarah White MHA³, Richard D. Zane MD^{1,2,3}

BACKGROUND

- The 2019 Novel Coronavirus (Covid-19) quickly became one of the most critical public health crises of this century.
- As of August 2021, the death toll was over 4.5 million people worldwide.¹
- In January 2021, the US Center for Disease Control and Prevention (CDC) estimated that 41.1 million Covid-19 vaccine doses had been distributed across the country, but only 22.7 million vaccines had been administered.²
- Drive-through vaccination clinics have been successful in previous public health events, including influenza immunizations.³
- Covid-19 drive-through testing centers have shown to be superior to traditional models.^{4,5}
- Early on, news media outlets reported length wait times and lack of clarity around eligibility and how to get a vaccine. Thus, there was some skepticism about the feasibility of an efficient drive-through mass-vaccination clinic.^{6,7}

AIMS

- Design and implement a novel, real-time data collection tool to collect time study data.
- Utilize the collected data to inform the intentional analysis and process improvement strategies to design and operate an efficient Covid-19 drive-through mass-vaccination clinic in Denver, CO that is replicable in other locations worldwide.

METHODS

- 1. Assemble a Diverse Team
 - IT, Logistics, EMS, Operations, Facilities, Traffic and Parking Control
- 2. Finding a Suitable Location
 - Colorado Rockies Parking at Coors Field
- 3. Scheduling Appointments
- 4. Utilizing Process Improvement
 - Initial Pilot Study
 - Intentional Analysis
 - Real-Time Data Collection
- 5. Close Collaboration with IT Team
- 6. Contingency Planning
- 7. Instituting Incident Command System
 - FEMA's National Incident Management System's Incident Command System

PROJECT STAKEHOLDERS

State of Colorado, City and County of Denver, Colorado Department of Public Health & Environment, Denver Police Department, Colorado Rockies, UCHealth, CU Anschutz Medical Campus

¹University of Colorado School of Medicine, Aurora, Colorado ²Department of Emergency Medicine, University of Colorado School of Medicine, Aurora, Colorado ³UCHealth, Aurora, Colorado

VACCINATION CLINIC OVERVIEW

- 5 Vaccine Clinics
 - 1/24 Pilot: 1,000 patients in 2 hrs.
 - 1/30, 1/31, 2/20, 2/21: 5000 patients in 6 hrs.
 - 11,000 patients fully vaccinated
- Data Collection
 - Real-Time Data Collection Tool
 - Google Sheets
 - Process
 - Sample vehicles numbered at entry
 - Observers track vehicles through checkpoints
 - Static timestamps reported in real-time
 - Intentional Experimentation
 - Number of vaccinators
 - Number of assistants
 - Concurrent registration and vaccination
 - Observation design

DATA-DRIVEN ITERATIVE DESIGN

- Intentional Experimentation
 - 53 sec. decrease in vaccination time with student + vaccinators
- Observation Area
 - Reworked observation area to reduce bottlenecks
- Communication
 - Increased message boards to direct traffic
- Registration + Vaccination
 - Queuing Theory: Combining two steps increased coefficient of variation but reduced total time spent in clinic

3rd Ma

INITIAL CLINIC LAYOUT

RESULIS	
tial Workflow	Total Time in Clinic (min)
nimum	12.02
Quartile	20.90
dian	22.40
Quartile	25.22
ximum	51.05

vised Workflow	Total Time in Clinic (min)
nimum	6.63
Quartile	9.75
edian	14.37
Quartile	18.15
aximum	49.62

KEY STATISTICS

- 11,000 vaccines administered
- 834 cars/hour (1,100 cars/hour at peak)
- 22.4 minutes per car including 15-minute observation period with initial workflow
- 14.4 minutes per car including avg. 8.5-minute observation period with revised workflow (observation optional)
- Zero unused doses
- 0.9% patient No-Show Rate
- All appointments filled within 72 hours

DISCLOSURES

The authors of this poster have no conflicts of interest to disclose. IRB Exempt.

- Required appointment scheduling Patients in the Phase 1 group arrived earlier than scheduled Contingency planning to discuss possible pinch points or system failures
- Continuous improvements and design iteration via real-time data collection and post-hoc analysis
- Mass vaccination clinics require heavy staffing burden

- Susceptibility to inclement weather
- Cost

LESSONS LEARNED

LIMITATIONS

Vehicle tracking

Transportation barriers

Partner with ride-sharing companies

• Vaccine doses \sim \$10/dose more at the drive-through clinic compared to brick-and-mortar clinics

REFERENCES

- Johns Hopkins University. Johns Hopkins Coronavirus Resource Center. Published 2021. Accessed August 9, 2021. https://coronavirus.jhu.edu/map.html U.S. Centers for Disease Control and Prevention. COVID Data Tracker. COVID-19 Vaccinations in the United
- States. Accessed March 23, 2021. https://covid.cdc.gov/covid-data-tracker/#vaccinations Weiss EA, Ngo J, Gilbert GH, Quinn JV. Drive-through medicine: a novel proposal for rapid evaluation of patients during an influenza pandemic. Ann Emerg Med. 2010;55(6):268-73
- 4. Choi S, Han C, Lee J, Kim S-I, Kim IB. Innovative screening tests for COVID-19 in South Korea. Clin Exp Emerg Med. 2020;7(6):73-7
- Flynn EF, Kuhn E, Shaik M, Tarr E, Scattolini N, Ballantine A. Drive-through COVID-19 testing during the 2020 pandemic: a safe, efficient, and scalable model for pediatric patients and health care workers. Acad Pediatr. 2020:20(6):753-5
- Osborne R. Denver plans community-based vaccine rollout as opposed to mass vaccination site. The Denver Channel.com. January 14, 2021. Accessed March 23, 2021. https://www.thedenverchannel.com/ news/frontrange/denver/denver-plans-community-based-vaccine-rollout-vs-mass-vaccination-site. McKenna M. Are mass clinics the solution for Covid-19 vaccination? Wired. January 26, 2021. Updated
- February 1, 2021. Accessed March 23, 2021. https://www.wired.com/story/are-mass-clinics-the-solution-f covid-19-vaccination/