Drive-Through Efficiency: How to Prepare for and Execute a Mass-Vaccination Event

Michael D. Skaggs MS1, Daniel Resnick-Ault MD MBA1,2, Sarah K. Wendel MD MBA1,2, Sarah White MHA3, Richard D. Zane MD1,2,3

1University of Colorado School of Medicine, Aurora, Colorado
2Department of Emergency Medicine, University of Colorado School of Medicine, Aurora, Colorado
3UCHealth, Aurora, Colorado

BACKGROUND

- The 2019 Novel Coronavirus (Covid-19) quickly became one of the most critical public health crises of this century.
- As of August 2021, the death toll was over 4.5 million people worldwide.1
- In January 2021, the US Center for Disease Control and Prevention (CDC) estimated that 41.1 million Covid-19 vaccine doses had been distributed across the country, but only 22.7 million vaccines had been administered.2
- Drive-through vaccination clinics have been successful in previous public health events, including influenza immunizations.3
- Covid-19 drive-through testing centers have shown to be superior to traditional models.4,5
- Early on, news media outlets reported length wait times and lack of clarity around eligibility and how to get a vaccine. Thus, there was some skepticism about the feasibility of an efficient drive-through mass-vaccination clinic.6,7

AIMS

- Design and implement a novel, real-time data collection tool to collect time study data.
- Utilize the collected data to inform the intentional analysis and process improvement strategies to design and operate an efficient Covid-19 drive-through mass-vaccination clinic in Denver, CO that is replicable in other locations worldwide.

METHODS

1. Assemble a Diverse Team
 - IT, Logistics, EMS, Operations, Facilities, Traffic and Parking Control
2. Finding a Suitable Location
 - Colorado Rockies Parking at Coors Field
3. Scheduling Appointments
4. Utilizing Process Improvement
 - Initial Pilot Study
 - Intentional Analysis
 - Real-Time Data Collection
5. Close Collaboration with IT Team
6. Contingency Planning
7. Instituting Incident Command System
 - FEMA’s National Incident Management System’s Incident Command System

PROJECT STAKEHOLDERS

State of Colorado, City and County of Denver, Colorado Department of Public Health & Environment, Denver Police Department, Colorado Rockies, UCHealth, CU Anschutz Medical Campus

RESULTS

<table>
<thead>
<tr>
<th>Initial Workflow</th>
<th>Total Time in Clinic (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum</td>
<td>12.02</td>
</tr>
<tr>
<td>1st Quartile</td>
<td>20.90</td>
</tr>
<tr>
<td>Median</td>
<td>22.40</td>
</tr>
<tr>
<td>3rd Quartile</td>
<td>25.22</td>
</tr>
<tr>
<td>Maximum</td>
<td>51.05</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Revised Workflow</th>
<th>Total Time in Clinic (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum</td>
<td>6.85</td>
</tr>
<tr>
<td>1st Quartile</td>
<td>9.75</td>
</tr>
<tr>
<td>Median</td>
<td>14.37</td>
</tr>
<tr>
<td>3rd Quartile</td>
<td>18.15</td>
</tr>
<tr>
<td>Maximum</td>
<td>49.62</td>
</tr>
</tbody>
</table>

DATA-DRIVEN ITERATIVE DESIGN

- Intentional Experimentation
 - 53 sec. decrease in vaccination time with student + vaccinators
 - Observation Area
 - Reworked observation area to reduce bottlenecks
 - Communication
 - Increased message boards to direct traffic
 - Registration + Vaccination
 - Queueing Theory: Combining two steps increased coefficient of variation but reduced total time spent in clinic

DISCLOSURES

The authors of this poster have no conflicts of interest to disclose. IRB Exempt.

REFERENCES