Human Breast Milk Enhances Cellular Proliferation in Corneal Wound Healing

Sarah N Seiwald, Michelle G Pedler, Anjali Mandava, Biehuo Shieh, Emily McCourt, J Mark Pettrash, Department of Ophthalmology

Introduction

• Corneal wounds are often treated with epithelial debridement, allowing regrowth of new epithelial cells.
• Corneal wound healing requires a cascade of signaling molecules, including epithelial growth factor (EGF) and growth modulating cytokines; however, a topical post-operative treatment with these components is not available.
• Human breast milk (HBM) offers a potential, novel treatment as it contains growth factors and cytokines that may play a role in epithelial cell migration and proliferation.

Purpose

• This study seeks to investigate the role of human breast milk in enhancing re-epithelialization of the cornea after mechanical wounding.
• Human breast milk may be a promising treatment for a variety of eye diseases and thus can be a cheaper alternative to pharmaceutical therapy.

Methods

Wound Model:
• Male and female Balb/C mice, 8 to 12 weeks old, were anesthetized prior to creating a 2mm central cornea defect with a 0.5mm Algerbrush (Figure 1).

Treatment:
• After wounding, mice were randomly assigned to one of three treatment groups: HBM, triple antibiotic ophthalmic ointment containing neomycin, polymyxin B, dexamethasone (RxTx), or saline and treated 4x/day for 2 days.
• Epithelial defect area was quantified by fluorescein and imageJ at 0, 8, 24, and 48 hrs post wounding. Eyes were used for histology, RT-qPCR, and ELISA.

Results

Figure 1. Algerbrush for corneal epithelial cell removal.

Figure 2. Mechanical debridement of surface cornea epithelium was completed with the Algerbrush. Comparison of OCT images of non-operated cornea (A) and cornea 30hrs after wounding (B).

Figure 3. HBM treatment enhances cornea wound healing at 8 hours. Fluorescein staining of representative mouse cornea at (A) 0h and (B) 24h post wounding with (C) percent reduction in fluorescein-staining corneal epithelial defect area at 8, 24, and 48h post wounding for three treatment groups: HBM, RxTx (neomycin, polymyxin B, dexamethasone), and saline (n=6 to 10, *p=0.0253).

Figure 4. HBM treatment enhances cellular proliferation in wounded corneas. (A) Immunofluorescent staining for cell proliferative marker, Ki67, on HBM treated corneal tissue sections (minimum of 5 consecutive frozen sections, n=3; **p=0.0063 at 8h, ***p=0.0077 at 24h). (B) ELISA of Ki67 in dissected corneas at 0, 8, 24, and 48h post wounding. HMB treated eyes had higher Ki67 levels vs. saline control at 8h (n=3; *p=0.0278). Normal represents unwounded, age-matched eyes.

Figure 5. (A) Transcript levels measured at 8h and 24h following injury. Groups comprised approximately equal representation from males and females. Transcript levels from male (filled symbols) and female (unfilled symbols) mice are shown separately at (B) 8h and (C) 24h following injury. Normal are untreated and unwounded. Significance determined from ANOVA with Tukey’s post hoc analysis, (n=6 per group; 3 males and 3 females per treatment group).

Figure 6. Abundance of integrin ανβ3 gene transcripts measured by RT-qPCR following injury of corneal tissue. (A) Transcript levels measured at 8h and 24h following injury. Groups comprised approximately equal representation from males and females. Transcript levels from male (filled symbols) and female (unfilled symbols) mice are shown separately at (B) 8h and (C) 24h following injury. Normal are untreated and unwounded. Significance determined from ANOVA with Tukey’s post hoc analysis, (n=6 per group; 3 males and 3 females per treatment group).

Conclusions

• In mouse models, topical HBM leads to a significantly smaller residual wounded surface area at 8h post wounding, similar to treatment with RxTx.
• HBM treatment enhanced proliferation of epithelial cells at 8h in the ocular surface.
• HBM may lead to enhanced numbers of macrophages (CD11b+ cells) that migrate into the cornea after mechanical wounding.
• LESC marker, Integrin αν, was upregulated in HBM - treated mice at 8h post wound. This was specifically noted in female mouse populations which may indicate that females are more responsive to HBM treatment via stimulation of LESC populations.

Future Directions

• Future studies could investigate the LESC response to different signaling molecules in human breast milk to understand the best therapeutic strategies and timing of those treatments in relation to injury.

Disclosures

The authors have no financial interests to disclose.

Acknowledgements

I would like to thank Dr. J. Mark Pettrash for his encouragement, guidance, and for allowing me to work in his laboratory, and Michelle Pedler for her instruction and aid. I would also like to thank the University of Colorado School of Medicine Research Track program for their support and the opportunity to complete research while in medical school.