Opioid Prescribing Practices for At-Risk Pediatric Populations Undergoing Ambulatory Surgery

Sterling Lee BA¹, Ashley Reid PharmD², James Thomas MD³, Melissa Masaracchia MD³

1. University of Colorado School of Medicine, 2. Children's Hospital Colorado, Department of Pharmacy 3. Children's Hospital Colorado, Section of Pediatric Anesthesiology

INTRODUCTION

- At risk populations for post-surgical opioidinduced respiratory depression include pediatric patients with a history of sleep disordered breathing (SDB) and obstructive sleep apnea (OSA)
- Although monitoring in the inpatient setting allows for early recognition of opioid-related adverse events, children with these comorbidities are presumably at even greater risk when undergoing outpatient procedures where this is far less vigilance.
- Guidelines for proper dosing in these groups have not been established.
- We sought to determine if surgical services at our institution modified prescriptions for certain comorbidities, weight or BMI-for-age percentiles.

Table 1. Patient demographics by low-dose vs. standard-dose oxycodone

		Obese	OSA-SDB			
	Low dose	Standard dose	100000000000000000000000000000000000000	Low dose	Standard dose	
	(n = 68)	(n= 60)	P value‡	(n= 147)	(n= 26)	P value
Age in years*	14 (6, 20)	16 (5, 20)	0.0388	7 (1, 20)	9.5 (2, 21)	0.0854
ABW (kg)*	93 (47, 176)	115.5 (42.5, 183)	0.0004	34.3 (8.4, 92.8)	45.6 (13.5, 80.7)	0.1896
IBW (kg)*	58 (6, 93.7)	55.8 (21.8, 83)	0.5523	26.9 (9.2, 74.1)	35.1 (14, 69.6)	0.0828
BMI	33.3 (27, 52.4)	41.3 (25.4, 68.5)	<.0001	20.5 (12.8, 29.5)	21 (14, 28.5)	0.4870
ASA Status, n (%)			0.1580			0.8155
1	4 (6%)	2 (3.3%)		8 (5.4%)	2 (7.7%)	
II	33 (49.2%)	21 (35%)		86 (58.5%)	13 (50%)	
III	30 (44.8%)	37 (61.7%)		52 (35.4%)	11 (42.3%)	
IV	0 (0%)	0 (0%)		1 (0.7%)	0 (0%)	
Surgical Services		, ,		, ,	, ,	
n, (%)			<.0001			<.000
GYNECOLOGY	2 (2.9%)	12 (20%)		0 (0%)	0 (0%)	
ORTHOPAEDICS	2 (2.9%)	13 (21.7%)		7 (4.8%)	6 (23.1%)	
OTOLARYNGOLOGY	50 (73.6%) 14 (20.6%)	12 (20%)		128 (87.1%)	9 (34.6%)	
OTHERS	14 (20.6%)	23 (38.3%)		12 (8.1%)	11 (42.3%)	
Dose weight type			<.0001			0.356
ACTUAL	36 (53.7%)	10 (16.7%)		119 (80.9%)	19 (73.1%)	
IDEAL	31 (46.3%)	50 (83.3%)		28 (19.1%)	7 (26.9%)	
	5.1 (0.6,					
Prescription duration †	8.1)	3.2 (1.3, 7)	0.4744	6.6 (1, 15.7)	3.9 (1.2, 11)	0.027

^{*} median (range)

Abbreviations: ABW, actual body weight; IBW, ideal body weight; BMI, body-mass-index, ASA status, ASA Physical Status

Table 2. Oxycodone prescriptions compared by comorbidity status

		Standard	Overall p-	P Value* (Control vs.	P Value*	-
Groups	Low Dose	Dose	value	Obese)	(Control vs. SDB)	
		2568				
Control	1805 (41.3%)	(58.7%)	<.0001	0.0073	<.0001	
Obese	68 (53.1%)	60 (46.9%)				
SDB	147 (85%)	26 (15%)				

^{*} P-value compares low dose and standard dose oxycodone prescriptions by comorbidity status

METHODS

- Baseline opioid prescribing data for all outpatient surgery patients receiving an opioid prescription between 1/2019-6/2020 were retrospectively reviewed.
- Patients with SDB or obesity were identified using ICD-10 codes.
- To obtain more information about prescribing practices, we analyzed patient demographics, size descriptors used for calculations, and prescription characteristics (dose, duration, prescribing surgical service).

RESULTS

- 4,674 patients received an opioid prescription after outpatient surgery. Of those, 173 patients had SDB and 128 were obese.
- The surgical subspecialties that issue most opioid prescriptions are otolaryngology and orthopedics.
- Obese patients were more likely to be prescribed (64%) opioids using ideal weight at higher mg/kg doses (>0.05mg/kg, 83.3%, p<.0001).
- When providers used actual body weight, lower doses (mg/kg) were more likely to be use (53.7%, p<.0001).
- No prescriptions used lean body mass.

CONCLUSIONS

- Overweight/obese children were more likely to receive opioid doses outside the recommended range.
- Variability in prescribing patterns demonstrate the need for more detailed guidelines to minimize the risk of opioid-induced respiratory complications in vulnerable pediatric populations.

REFERENCES

- Nagappa M, Weingarten TN, Montandon G et al. Opioids, respiratory depression, and sleep-disordered breathing. *Best Pract Res Clin Anaesthesiol*. 2017;31(4):469–485.
 Gupta K, Prasad A, Nagappa M et al. Risk factors for opioid-induced respiratory depression and failure to rescue: a review. *Curr Opin Anaesthesiol*. 2018;31(1):110–119.
 Burke CN, Voepel-Lewis T, Wagner D. A retrospective description of anesthetic medication dosing in overweight and obese children. *Paediatr Anaesth*. 2014;24:857–
- 4. Parameswaran K, Todd DC, Soth M. Altered respiratory physiology in obesity. *Can Respir J*. 2006;13(4):203–210.
- 5. Brown KA, Laferrière A, Lakheeram I, Moss IR. Recurrent hypoxemia in children is associated with increased analgesic sensitivity to opiates. *Anesthesiology* . 2006;105(4):665–669.
- 6. Parikh JM, Amolenda P, Rutledge J et al. An update on the safety of prescribing opioids in pediatrics. *Expert Opin Drug Saf* . 2019;18(2):127–143.
- 7. Dean Horton J, Munawar S, Corrigan C et al. Inconsistent and excessive opioid prescribing after common pediatric surgical operations. *J Pediatr Surg*. 2019;54(7):1427–1431
- 8. Smit C, De Hoogd S, Bruggemann RJM, Knibbe CAJ. Obesity and drug pharmacology a review of the influence of obesity on pharmacokinetic and pharmacodynamic parameters. *Expert Opin Drug Metab Toxicol*. 2018;14:275–285.
- 9. Xiong Y, Fukuda T, Knibbe CAJ, Vinks AA. Drug dosing in obese children: challenges and evidence-based strategies. *Pediatr Clin North Am*. 2017;64:1417–1438.
- 10. Centers for Disease Control and Prevention; National Center for Health
 Statistics International Classification of Diseases. Tenth Revision Clinical Modification
- (ICD-10-CM) Accessed November 13, 2020. https://www.cdc.gov/nchs/icd/icd10cm.htm 11. Barlow SE;, Expert Committee Expert committee recommendations regarding the prevention, assessment, and treatment of child and adolescent overweight and obesity:
- 12. McLaren DS, Read WW. Classification of nutritional status in early childhood. *Lancet* . 1972;2(7769):146–148.

summary report. Pediatrics . 2007;120(suppl 4):S164-S192.

- 13. Berde CB, Sethna NF. Analgesics for the treatment of pain in children [published correction appears in *N Engl J Med* 2011;364(18):1782] *N Engl J*
- Med . 2002;347(14):1094–1103.

 14. American Pain Society *Principles of Analgesic Use in the Treatment of Acute Pain and Cancer Pain* . 7th ed. Glenview, IL: American Pain Society; 2016.
- 15. Green B, Duffull SB. What is the best size descriptor to use for pharmacokinetic studies in the obese? *Br J Clin Pharmacol* . 2004;58(2):119–133.
- 16. Callaghan C, Walker JD. An aid to drug dosing safety in obese children: development of a new nomogram and comparison with existing methods for estimation of ideal body weight and lean body mass. *Anaesthesia*. 2015;70:176–182.
- 17. Pan SD, Zhu LL, Chen M et al. Weight-based dosing in medication use: what should we know? *Patient Prefer Adherence* . 2016;10:549–560.
- 18. Goldman JL, Baugh RF, Davies L. Mortality and major morbidity after tonsillectomy: etiologic factors and strategies for prevention. *Laryngoscope* . 2013;23(10):2544–2553.

[†] days prescribed (range)

[‡] P-value compares low dose and high dose oxycodone prescribing by comorbidity