Placental DEPTOR inhibition restores maternal vasodilation in FGR mice.

Jasmine K. Polkowske,1 Sahand Fallahi,1 Johann Urschitz,2 Fredrick J. Rosario,1 and Ramón A. Lorca1

1 DIVISION OF REPRODUCTIVE SCIENCES, DEPARTMENT OF OBSTETRICS AND GYNECOLOGY, UNIVERSITY OF COLORADO ANSCHUTZ MEDICAL CAMPUS
2 INSTITUTE FOR BIOGENESIS RESEARCH, DEPARTMENT OF ANATOMY, BIOCHEMISTRY AND PHYSIOLOGY, UNIVERSITY OF HAWAII, HONOLULU, HI, USA

• CO-FIRST AUTHORS

BACKGROUND

• Fetal growth restriction (FGR) is a common pregnancy complication characterized by a reduction in expected fetal growth.1
• The mechanistic target of rapamycin (mTOR) kinase is the catalytic subunit of two complexes, called mTOR complex 1 and 2 (mTORC1 and mTORC2). Studies have shown mTORC1 and mTORC2 are decreased in human placentas from FGR pregnancies as well as in animal models of nutrient-restriction FGR, suggesting placental mTOR signaling links maternal nutrient availability to fetal growth.2,3,4,5
• DEP-domain-containing mTOR-interacting protein (DEPTOR) is an endogenous inhibitor of mTOR signaling that downregulates mTORC1 and mTORC2 activity. It has been shown that silencing DEPTOR in the placenta increases trophoblast amino acid transport and mitochondrial respiration.6,7
• Vasodilation of the uterine arteries (UtA) is a key component of this adaptation as pregnancy progresses. Consistently, reduced UtA vasodilation and blood flow has been observed in human FGR pregnancy and FGR animal models compared to normal fetal growth pregnancies.8,9

METHODS

Animals. Pregnant females were divided into two dietary groups: control group was fed a diet comprised of 20% protein, while a low protein group was fed a diet comprised of only 6% protein. At GD 10.5, pmGenIE shRNA Mmir constructs targeting DEPTOR (DEPTOR-ShRNA) or scrambled sequences (FGHR-Scr) were delivered to each placenta via sonoporation in the FGR group. Control diet diet dams received pmGenIE shRNA Mmir construct with scrambled sequence (Control-Scr). At GD 10.5, dams were euthanized and right and left UtA were isolated and either used for myography or histological sectioning.

Wire Myography. Isolated vessels (Figure 1) were mounted in a small-vessel wire myograph (Figure 2). UtA were constricted with 120 mM KCl to establish viability. The full contractile response to phenylephrine was determined across 1 nM - 100 µM range. Vasodilation was tested by pre-constricting the vessels with 10 µM PE for 15 min and then applying increasing concentrations of vasodilators: acetylcholine (ACh, 0.1 nM - 100 µM); bradykinin (BK, 0.1 nM - 1 µM); or the nicotinic acid (NO) donor sodium nitroprusside (SNP, 0.1 nM - 100 µM).

Histology. Samples were attached to slides and underwent a hematoxylin and eosin staining process. Stained vessels were imaged using bright field microscopy. Lumen perimeter and cross-sectional area (CSA) were measured by determining the area encompassing the tunica intima and tunica media, excluding the luminal area.

RESULTS

Maternal UtA Vascular Responses

Figure 3. Contractile response curves to phenylephrine (PE) in Control-Scr, FGR-Scr, and FGR-DEPTOR pregnant mice. Vasodilation of uterine arteries was similar between all groups with no significant differences.

Maternal UtA Vascular Structural Analysis

Figure 5. Histologic cross sections of Ctrl-Scr, FGR-Scr, and FGR-DEPTOR uterine arteries with respective cross-sectional area analysis; scale represented as 10µM on FGR + DEPTOR photo (Figure 5A). Lumen perimeter was not significantly different between groups (5B). Cross-sectional area of FGHR-Scr appeared to decrease compared to Control-Scr (5C).

Conclusions

The results from this study suggest placental mTOR signaling contributes to regulate uterine vasodilation during murine pregnancy. By inhibiting placental DEPTOR, the NO-dependent vasodilatory responses in UtA were restored, suggesting an important role for mTOR signaling in FGR. Understanding the various complexes involved in the pathophysiology of FGR can lead to the development of targeted therapeutics and treatments in the human population.

REFERENCES


CONCLUSIONS

The results from this study suggest placental mTOR signaling contributes to regulate uterine vasodilation during murine pregnancy. By inhibiting placental DEPTOR, the NO-dependent vasodilatory responses in UtA were restored, suggesting an important role for mTOR signaling in FGR. Understanding the various complexes involved in the pathophysiology of FGR can lead to the development of targeted therapeutics and treatments in the human population.

ACKNOWLEDGEMENTS

Conflicts of Interest: The authors declare no financial, personal, or professional conflict of interests that could influence the objective presentation and interpretation of the research findings. This work was funded by the National Institutes of Health R21-DK102028 (RAL), R21-DK102270 (RAL), and R21-DK1020715 (EAR) grants, and by the Lorna Greene Moore Senior Faculty Launch Fund (RAL).