BACKGROUND
• In the absence of significant accidental trauma, multiple fractures in a young child raises concern for physical abuse
• It has been hypothesized that there is an unrecognized “epidemic” of 25-OH Vitamin D insufficiency that produces findings frequently mistaken for child abuse
• This has been widely cited in legal cases involving suspected child abuse
• We aim to test the theory that 25-OH Vitamin D deficiency increases the risk for fracture in children
• Important to note this is only a preliminary study and significantly underpowered
• Data would seem to refute the hypothesis that 25-OH Vitamin D deficiency predisposes children to multiple fractures in the absence of significant trauma
• 25-OH Vitamin D insufficiency should not be offered as a reason to doubt the presence of physical abuse in a child with multiple, unexplained fractures
• This study is continuing to enroll subjects until a predetermined power criteria is met

METHODS
• This study was approved by the IRB under a waiver of informed consent
• Participants were prospectively identified from a single level 1 pediatric trauma center who met CDPHE or NTDS trauma registry criteria
• Included criteria: < 5 years old and sufficient serum was obtained during the patient’s clinical care
• 25-OH Vitamin D levels were obtained and clinical data was reviewed to determine the total number of fractures
• Exclusion criteria: previously diagnosed bone fragility disorder or inadequate serum available for 25-OH Vitamin D analysis

CONCLUSIONS AND LIMITATIONS
• Important to note this is only a preliminary study and significantly underpowered
• Data would seem to refute the hypothesis that 25-OH Vitamin D deficiency predisposes children to multiple fractures in the absence of significant trauma
• 25-OH Vitamin D insufficiency should not be offered as a reason to doubt the presence of physical abuse in a child with multiple, unexplained fractures

Table 1: Outcomes Stratified by 25-OH Vitamin D Status

Vitamin D Status	Number of Subjects	Median (IQR)	Range	p
Sufficient (>20 ng/mL)	70	27.4 (25.4-31.7)	20.1-69.5	<0.001
Insufficient (<20 ng/mL)	13	14.7 (11.5-16.7)	4.0-18.5	

Table 2: Logistic regression for odds of fracture from vitamin D levels (ng/mL) and adjusting for age, sex, ISS scores and injury mechanism

Factor	Univariate OR (95% CI)	Multivariate aOR (95% CI)
Vitamin D Insufficiency	1.23 (0.37, 4.43)	2.45 (0.46, 19.73)
ISS (Moderate vs. Minor)	2.36 (0.83, 7.04)	1.99 (0.54, 7.50)
ISS (Severe/Very Severe vs. Minor)	2.36 (0.67, 9.29)	1.85 (0.39, 9.23)
Severe Injury Mechanism	3.40 (1.18, 11.42)	2.21 (0.46, 12.12)
Age (Months)	0.99 (0.97, 1.03)	0.99 (0.96, 1.03)
Male	1.04 (0.43, 2.52)	1.20 (0.39, 3.82)
Trauma Mechanism: Fall	1.96 (0.57, 5.77)	2.58 (0.21, 37.78)
Trauma Mechanism: Non-Accidental Trauma	2.37 (0.72, 9.23)	11.71 (1.60, 142.53)
Trauma Mechanism: Motor-Vehicle	1.62 (0.51, 5.68)	3.74 (0.19, 82.21)
Trauma Mechanism: Animal	0.72 (0.15, 3.26)	2.03 (0.23, 26.17)
Trauma Mechanism: Burn/Unclear/Other	0.41 (0.15, 1.04)	0.79 (0.07, 9.26)