Piriform Cortex Atrophy is Discordant with Seizure Lateralization in Temporal Lobe Epilepsy

Keanu Chee, Lisa Hirt, Madelyn Mendlen, Eric Bayman, Ashkaun Razmara, Aaron Geller, Ashesh Thaker, John A. Thomson, Daniel R. Kramer
University of Colorado School of Medicine Department of Neurosurgery

Background
- Piriform Cortex (PC) – Primary Olfactory Cortex; implicated as seizure focus in TLE
- >50% resection correlated with 16-times greater chance of achieving seizure freedom
- Unique architecture & no primary regulation of signals by thalamus
- Volumetric MRI/EEG-fMRI analyses have shown abnormalities in regions such as PC, hippocampus, amygdala, entorhinal cortex in TLE patients
- Amygdala/Hippocampal atrophy occurs ipsilateral to seizure focus
- Hypothesis: PC atrophy is a unique phenomenon in TLE and will primarily lateralize to the side of pre-determined seizure focus

Objective
Utilize a robust volumetric analysis to determine whether PC atrophy occurs strictly in TLE vs. non-TLE, as well as determine whether PC atrophy localizes to the side of seizure focus.

Methods
- Medically Refractory Epilepsy Patients
 - Control: 20
 - TLE: 35 (16 L; 19 R)
 - non-TLE: 13 (10 L; 3 R)
- All patients underwent Phase II sEEG to confirm seizure focus
- PC Volumetric Analysis
- Statistical Analysis – T-test (p < .05)

PC atrophy occurs in all forms of epilepsy and does not consistently lateralize to the side of seizure focus. Non-specific PC atrophy is likely attributed to a lack of primary regulation by the thalamus, as well as a complex set of connections to many cortical regions throughout the cortex.

CONCLUSION