Examination of Diffuse Myocardial Fibrosis in Pediatric and Young Adult Fontan Circulations: A Retrospective Cohort Study University of Colorado Anschutz Medical Campus

Results

Ernie Arnouts. Nicolas D Drysdale, Lorna P Browne, Cesar Gonzalez de Alba, LaDonna J Malone, Brian Fonseca, Michael V DiMaria, Alex J Barker

Children's Hospital Colorado Advanced Imaging Lab

Background

- The Fontan procedure is a surgical intervention for various congenital heart defects. The result is a unique cardiopulmonary circuit with passive caval-pulmonary perfusion and a single systemic ventricle.
- Modern surgical techniques have driven 25-year survival as high as 85%, necessitating management of downstream complications of congestive hepatopathy, arrhythmias, heart failure and progression to heart transplant.
- Cardiac MR is the gold standard for monitoring parameters of ventricular function and offers quantitative measurement of myocardial fibrosis via native T1 and extracellular volume.

Methods

Aim: Employ cardiac MR to guantify myocardial fibrosis among Fontan and control patients to examine for any differences and to examine possible clinical correlates to these values.

- COMIRB approved retrospective cohort study established from patients with cardiac MR dated January 2019 to March 2022 as part of post-Fontan monitoring vs healthy volunteers. Chart reviewed for demographic and imaging data.
- Post-processing of imaging performed in Circle cvi42 to obtain myocardial native T1s and extracellular volume for the basal, middle and apical ventricle. Averaged to produce a global result.
- Statistical analysis of data was stratified by Fontan vs healthy control, field strength, and ventricular dominance.
- Correlates to patient demographics and functional status were calculated via Pearson correlation coefficients.

Table 1. Demographic	s, CIVIR and CPET	data for Cont	rois and	Fontans sti	atified by					
ventricular dominance	е.						Table 2. ECV Cor	relations to Dem	ographics and Fu	ictic
Demographics	Controls (N=49)	Fontans (N=93)	p-value	DRV (N=45)	DLV (N=47)	p-value	Age	-0.35**	-0.30*	٣
Sex (% Male)	57%	60%	0.723	76%	47%	0.0047	Age at Fontan	0.09	0.02	
Age (years)	14.7±5.8	12.5 ± 7.5	0.078	9.8±6.4	15.2 ± 7.6	<.001	Hematocrit Systolic BP	-0.51**	-0.55**	ir.
Age at Fontan (months)	-	39.6 + 13.6	-	39.9 + 15.1	39.1 + 12.2	0.785	Diastolic BP	-0.39**	-0.35*	
Height (cm)	158 3 + 22 3	139 9 + 29 4	< 001	132 3 + 30 8	148 3 + 25 1	0.008	EDV	-0.28*	-0.28	T
Woight (kg)	60 8 ± 27 1	47.7 + 20.2	0.010	41 7 + 37 9	F4 2 ± 20.4	0.000	EDV (i)	-0.06	-0.23	
weight (kg)	00.8127.1	47.7 1 25.2	0.010	41.7127.0	34.2123.4	0.059	ESV (i)	-0.22-	-0.28	ter.
Hematocrit (%)	38.2 ± 7.9	46.5±5.1	<.001	46.1±5.5	46.9±4./	0.4/3	Vent Mass (inc	0.27*	0.31	
CMR Parameters							CO	-0.20	-0.08	1
EF (%)	57.4 ± 4.4	46.8±9.3	<.001	44 ± 10.2	49.9 ± 6.7	0.001	APC Aorta	0.20	0.17	
EDV (mL)	135.1±43.5	131 ± 70.3	0.707	140.6±86	121.2 ± 51.2	0.190	APC PA VEDP	0.26*	0.14	ł.
FDVi (ml/m ²)	82.1 + 15.4	102.5 ± 43	0.002	118 + 41.7	83.9 + 27.9	<.001	Q _p (i)	-0.14	-0.19	Γ
ESV (ml)	59.8 + 21.2	725+514	0.099	828+654	61 6 + 30 3	0.048	Fick CO (i)	0.36*	0.25	۳
$\Gamma(m)/m^2$	261+79	F7 2 + 26 F	< 001	60 + 28 2	42 7 + 10 1	< 001	Vo2 Max	-0.28*	-0.08	
	50.1 ± 7.8	57.5 ± 50.5	\$.001	09 1 30.5	42.7 ± 15.1	<.001	VO2 max (i)	0.03	0.08	spec
Vent Massi (g/m²)	47.2±11	57±44.8	0.187	80.6±44	40.7 ± 12.6	<.001				
CO (LPM)	5.4 ± 1.7	4.5 ± 1.6	0.002	4.5 ± 1.7	4.4 ± 1.5	0.684				
CI (LPM/m ²)	3.3 ± 0.8	3.6±1.3	0.163	4.2±1.3	3.1±1	<.001				
APC Flow Aorta (%)	-	19.6 ± 12.5	-	21.9 ± 13.3	17.3 ± 11.4	0.122				
APC flow PA (%)	-	24.6 ± 15.5	-	28.6±16.5	20.5 ± 13.7	0.035				
CPET Parameters				2						
Mean Time to CPET	-	121.3 ± 188.6	-	104.1 ± 148.8	101.6 ± 172.4	0.950				
VO2 Max (LPM)	2.4 ± 0.7	1.3 ± 0.5	<.001	1.3 ± 0.5	1.3 ± 0.4	0.701				
VO2 Maxi (mL/kg/min)	37.2 ± 9.8	26.5 ± 7.1	<.001	27.3 ± 6.3	26.2 ± 7.6	0.549				
CMR Fibrosis Markers										
1.5T Global Native T1	981.4 ± 30.5	1031.6 ± 50.8	<.001	1040.9±51.8	1023.1 ± 49.5	0.166				
3T Global Native T1	1253.4 ± 48.7	1287.5 ± 58.6	0.031	1275.5 ± 68.5	1299.4±46.3	0.289				
Extracellular Volume	22 2 + 2	26 ± 4	< 001	26 2 + 4 1	25 4 + 2 5	0 221				

AAPC, aortopulmonary collateral; BP, blood pressure; BSA, Body Surface Area; CMR, cardiac magnetic resonance; CO, cardiac output; CI, cardiac output indexed; CPET, cardiopulmonary exercise test; DRV, dominant right ventricle; DLV, dominant left ventricle; EDV, end diastolic volume: EDVi and diastolic volume indexed; FE, ejection fraction; ESV, and systolic volume; ESVi, and systolic volume indexed; HCT Hematocrit; QPi, pulmonary flow indexed; RPi, pulmonary resistance indexed; VEDP, ventricular end diastolic pressure; Vent Massi, ventricular mass indexed

Results/Discussion

- Fontan cohort of 93 patients (45 DRV, 47 DLV. 1 combined) showed significant difference when compared to the control cohort (N=49) with EF, CO, and VO2 max markedly reduced among the Fontans.
- Native T1 and ECV were significantly and diffusely elevated among the Fontans.
- Some demographics differences were present between DRV and DLV but there were no significant differences in fibrotic markers.
- Significant inverse correlation to ECV was noted with age, hematocrit, diastolic BP and VO2 max.

Conclusions

- Markers of myocardial fibrosis were elevated among the Fontan cohort compared to healthy controls.
- · Fontan patients were shown to have a reduced exercise tolerance as measured by VO2 max.
- A negative correlation between ECV and VO2 max was observed across the Fontan group, suggesting a possible relationship between myocardial fibrosis and impaired exercise tolerance.

Limitations

- · Sedation is not routinely used for pediatric CMR screening and is thus limited by
- patients' ability to cooperate and breath-hold. Similar limits on contrast administration and
- obtaining hematocrits in healthy volunteers. Strain measurements were not incorporated
- into the present study but could be of future interest.

Disclosures

· The authors have no disclosures

Figure 1. Cardiac MR 3D rendering of Fontan anatomy. Figure 2. T1 mapping through cardiac apex with labelled anatomy. Figure 3. Examples of post-processing in cvi42.

0.00

-0.45* -0.03

-0.35*

-0.10

-0.37*

-0.06

-0.27

-0.01

0.03 -0.39*

0.13

0.22

-0.10

0.46*

0.26 -0.35*

